
Machine Learning

Sara Pohland

Created: January 29, 2021

Last Modified: December 14, 2023

1

Contents

I Overview of Machine Learning Methods 8

1 Introduction to Machine Learning 9
1.1 Machine Learning Abstractions 9

1.1.1 Data & Application . 9
1.1.2 Model . 10
1.1.3 Optimization Problem . 11
1.1.4 Optimization Algorithm 11

II Supervised Learning Techniques 12

2 Introduction to Supervised Learning Techniques 13
2.1 Overview of Supervised Learning 13

2.1.1 Classification & Regression 13
2.2 Bias & Variance . 13

2.2.1 Implications of Bias & Variance 14
2.2.2 Feature Selection . 15

2.3 Receiver Operating Characteristics 15
2.3.1 Outcomes of Binary Classifier 15
2.3.2 ROC Curve . 16

3 Linear Classifiers 18
3.1 Decision Boundaries . 18

3.1.1 General Decision Boundaries 18
3.1.2 Linear Decision Boundaries 18
3.1.3 Linearly Separable . 19

3.2 Centroid Method . 19
3.3 Perceptron Algorithm . 20

3.3.1 Perceptron Algorithm Without Bias 20
3.3.2 Perceptron Algorithm With Bias 22
3.3.3 Convergence of Perceptron Algorithm 22

2

CONTENTS CONTENTS

4 Support Vector Machines (SVMs) 23
4.1 Hard-Margin SVM . 23

4.1.1 Maximum Margin Classifier 23
4.1.2 Hard-Margin SVM Problem 24
4.1.3 Support Vectors . 25

4.2 Soft-Margin SVM . 26
4.3 Adding Features . 27

4.3.1 Parabolic Lifting Map . 28
4.3.2 Ellipsoid & Hyperboloid Decision Boundaries 28
4.3.3 Polynomial Decision Boundaries 29

5 Bayes Decision Rule 30
5.1 Two Classes . 30

5.1.1 Bayes Decision Rule: Asymmetric Loss 30
5.1.2 Bayes Decision Rule: Symmetric Loss 32
5.1.3 Bayes Risk . 33

5.2 Multiple Classes . 34
5.2.1 Bayes Decision Rule: Asymmetric Loss 34
5.2.2 Bayes Decision Rule: Symmetric Loss 34
5.2.3 Bayes Risk . 35

5.3 Generative & Discriminative Models 36

6 Multivariate Gaussians 37
6.1 Overview of Multivariate Gaussians 37
6.2 Quadratic Forms . 37
6.3 Anisotropic Gaussians . 38

6.3.1 Quadratic Form & Isosurfaces 38
6.4 Isotropic Gaussians . 39

6.4.1 Quadratic Form & Isosurfaces 40

7 Maximum Likelihood Estimation (MLE) 41
7.1 Overview of Maximum Likelihood Estimation 41

7.1.1 Likelihood Estimators . 41
7.1.2 Bias of Estimators . 42

7.2 Isotropic Multivariate Gaussians 42
7.2.1 Sample Mean . 43
7.2.2 Sample Variance . 43
7.2.3 Bias of Estimators . 44

7.3 Anisotropic Multivariate Gaussians 46
7.3.1 Sample Mean . 46
7.3.2 Sample Covariance Matrix 47
7.3.3 Bias of Estimators . 47
7.3.4 Invertibility of Sample Covariance 48

7.4 Discrete Random Variables . 48

3

CONTENTS CONTENTS

8 Gaussian Discriminant Analysis (GDA) 49
8.1 Overview of Gaussian Discriminant Analysis 49
8.2 Quadratic Discriminant Analysis (QDA) 49

8.2.1 Isotropic Multivariate Gaussians 50
8.2.2 Anisotropic Multivariate Gaussians 51

8.3 Linear Discriminant Analysis . 52
8.3.1 Isotropic Multivariate Gaussians 52
8.3.2 Anisotropic Multivariate Gaussians 53

8.4 Comparison of LDA & QDA . 54

9 Regression 56
9.1 Overview of Regression . 56
9.2 Linear Least Squares Regression 57

9.2.1 Optimal Solution . 58
9.2.2 Advantages & Disadvantages 58
9.2.3 Bias-Variance Decomposition 59

9.3 Polynomial Least Squares Regression 60
9.4 Weighted Least Squares Regression 60

9.4.1 Optimal Solution . 61
9.4.2 Advantages & Disadvantages 61

9.5 Logistic Regression . 62
9.5.1 Optimal Solution . 62
9.5.2 Advantages & Disadvantages 65

10 Regularization 66
10.1 Overview of Regularization . 66
10.2 Ridge Regression (Tikohonov Regularization) 66

10.2.1 Optimal Solution . 67
10.2.2 Variation of Ridge Regression 67

10.3 LASSO . 68
10.4 Bias-Variance Trade-Off . 68
10.5 Comparison of Regularization Methods 69

10.5.1 Statistical Justification . 69
10.5.2 Feature Selection . 71

11 Decision Trees 73
11.1 Overview of Decision Trees . 73

11.1.1 Advantages & Disadvantages 73
11.2 Binary Decision Trees for Classification 74

11.2.1 Decision Tree Nodes . 74
11.2.2 Decision Tree Training . 75
11.2.3 Choosing the Best Split 75
11.2.4 Choosing the Stopping Criterion 79
11.2.5 Decision Tree Classification 80
11.2.6 Algorithms & Running Times 81

11.3 Decision Tree Variations . 82

4

CONTENTS CONTENTS

11.3.1 Regression . 82
11.3.2 Pruning . 82
11.3.3 Multivariate Splits . 82

12 Nearest Neighbors Classifier 84
12.1 Overview of Nearest Neighbors 84

12.1.1 Tuning the Hyperparamter 84
12.1.2 Performance of Nearest Neighbors 84

12.2 Nearest Neighbor Algorithms . 85
12.2.1 Exhaustive k-NN Algorithm 85
12.2.2 Voronoi Diagrams . 86
12.2.3 k-d Trees . 87

13 Neural Networks 91
13.1 Overview of Neural Networks . 91

13.1.1 Loss & Cost Functions . 92
13.1.2 Activation Functions . 93
13.1.3 Backpropagation . 95

13.2 Multilayer Perceptrons (MLPs) 96
13.2.1 Fully-Connected Layer . 96
13.2.2 Forward Pass . 97
13.2.3 Backward Pass . 97

13.3 Convolutional Neural Networks (CNNs) 98
13.3.1 Convolutional Layer . 99
13.3.2 Pooling Layer . 101

13.4 Neural Network Heuristics . 101
13.4.1 Sigmoid Unit Saturation 101
13.4.2 Heuristics for Faster Training 102
13.4.3 Heuristics for Avoiding Bad Local Minima 103
13.4.4 Heuristics to Avoid Overfitting 104
13.4.5 Heuristics to Avoid Underfitting 105
13.4.6 Initializing Parameters . 105

III Unsupervised Learning Techniques 106

14 Principal Component Analysis (PCA) 107
14.1 Overview of PCA . 107

14.1.1 Purpose of PCA . 107
14.1.2 Orthogonal Projections 108

14.2 PCA Interpretations . 108
14.2.1 Fitting a Gaussian . 109
14.2.2 Maximizing Variance . 109
14.2.3 Minimizing Projection Error 110

14.3 More on PCA . 112
14.3.1 Choosing Size of k . 112

5

CONTENTS CONTENTS

14.3.2 Singular Value Decomposition (SVD) 112
14.3.3 PCA vs. LASSO . 113

15 Clustering 114
15.1 Overview of Clustering . 114
15.2 k-Means Clustering . 114

15.2.1 k-Mean Heuristic . 115
15.2.2 Initializing the k-Means Algorithm 116
15.2.3 k-Medoids Clustering . 117

15.3 Hierarchical Clustering . 117
15.3.1 Cluster Linkage . 117
15.3.2 Dendrogram . 118

15.4 Spectral Clustering . 118
15.4.1 Graph Theory . 119
15.4.2 Overview of Spectral Clustering 121
15.4.3 Algebraic Problem . 121
15.4.4 Advantages of Spectral Clustering 123
15.4.5 Variations of Spectral Clustering 124

IV Improving Learning Techniques 127

16 The Kernel Trick 128
16.1 Kernels . 128

16.1.1 Polynomial Kernel . 129
16.1.2 Gaussian Kernel . 129

16.2 Kernelization . 131
16.3 Kernel Ridge Regression . 131

16.3.1 Dual Form of Ridge Regression 132
16.3.2 Kernel Trick for Ridge Regression 133

16.4 Kernel Perceptrons . 133
16.4.1 Dual Form of Perceptron 134
16.4.2 Kernel Trick for Perceptrons 135

16.5 Kernel Logisitic Regression . 135
16.5.1 Dual Form of Logistic Regression 136
16.5.2 Kernel Trick for Logisitc Regression 136

16.6 Kernel k-Means Clustering . 137
16.6.1 Dual Form of k-Means Clustering 137
16.6.2 Kernel Trick for k-Means Clustering 137

17 Ensembling & Adapative Boosting 139
17.1 Ensemble Learning . 139

17.1.1 Bias & Variance with Ensembling 139
17.2 Bagging . 140
17.3 Random Forests . 140

17.3.1 Feature Subset Selection 141

6

CONTENTS

17.3.2 Number of Decision Trees 141
17.3.3 Algorithms & Running Times 141

17.4 AdaBoost . 142
17.4.1 Metalearner . 142
17.4.2 AdaBoost Optimization Problem 142
17.4.3 Optimal Classifier Prediction 144
17.4.4 Optimal Classifier Weight 145
17.4.5 Adaboost Algorithm . 145
17.4.6 Important Notes . 146
17.4.7 Short Decision Trees . 146

Machine Learning | S. Pohland

Part I

Overview of Machine
Learning Methods

8

Chapter 1

Introduction to Machine
Learning

1.1 Machine Learning Abstractions
There are four abstractions of machine learning: data/application, model, opti-
mization problem, and optimization algorithm. In these notes, we focus primar-
ily on models and optimization problems. However, optimization problems are
covered much more thoroughly in the convex optimization notes. The convex
optimization notes also contain information on optimization algorithms.

1.1.1 Data & Application
The first component of machine learning is the data set, which is composed of
data samples with various features. Data is considered labeled if there is some
value or class associated with each data sample, and it is considered unlabeled
if we are not given any label associated with each data sample. A set of data
may be used for various different applications. The type of machine learning
problem we perform depends heavily on the type of data we are given. Below
are the general classes of machine learning problems:

1. Supervised learning – Learning problems involving labeled data.

(a) Classification – If the labels corresponding to each data sample
are categorical, then we are interested in performing classification to
predict the class of unseen data.

(b) Regression – If the labels corresponding to each data sample are
quantitative, then we are interested in performing regression to esti-
mate the associated value of unseen data.

2. Unsupervised learning – Learning problems involving unlabeled data.

9

CHAPTER 1. INTRODUCTION TO MACHINE LEARNING

(a) Clustering – If we are want to determine the similarity among un-
labeled data samples, then we are in interested clustering data.

(b) Dimensionality reduction – If we are want to determine the rela-
tive positioning of unlabeled data samples, then we are interested in
dimensionality reduction.

1.1.2 Model
Given a data set for a desired application, we want to generate a model of
the data. In supervised learning problems, we often use some kind of decision
function to predict the class or value associated with the data samples. In
unsupervised learning problems and some supervised learning problems, we use
a model that does not have a decision function. When training a model, we
generally break the data into the following three groups:

1. Training set – The training set is the subset of the given data (usually
around 80%) that is used to train a model. The training error is the
fraction of the training data classified incorrectly by the trained model, and
training accuracy is the fraction of the training data classified correctly.

2. Validation set – The validation set is the subset of the given data (usually
around 20%) that is not used to train the model and is instead used to
tune hyperparameters of the model. The validation error is the fraction
of the validation data classified incorrectly by the trained model, and the
validation accuracy is the fraction of the data classified correctly.

3. Test set – The test set is the set of unseen data, which is not seen during
training and is used to test the classifier. The test error is the fraction
of the test data classified incorrectly by the trained model, and the test
accuracy is the fraction of the test data classified correctly.

Often, we train the model multiple times on the training set with different hyper-
parameters and choose the parameter values that give us the lowest validation
error. Machine learning models generally run into two major issues:

1. Underfitting – Underfitting occurs when the trained model is not able
to accurately reflect the underlying distribution of the data, resulting in
high training error, as well high validation/test error.

2. Overfitting – Overfitting occurs when training error is low, but the val-
idation/test error deteriorates because the model does not generalize well
to new examples. This occurs when our model is too sensitive to outliers
or other spurious patterns in the training data.

Models are generally considered to be either low capacity or high capacity. Low
capacity models are less complicated and tend to underfit easily, while high
capacity models are more complicated and tend to overfit easily.

Machine Learning | S. Pohland

CHAPTER 1. INTRODUCTION TO MACHINE LEARNING

1.1.3 Optimization Problem
Given a model of the data, we generate an optimization problem, which is
composed of variables, constraints, and an objective function. Optimization
problems may be constrained or unconstrained, and they can be convex or non-
convex. For information on these classifications of optimization problems, please
reference the convex optimization notes. Some popular categories of convex
optimization problems are linear programs, quadratic programs, second-order
cone programs, and semidefinite programs. These convex programs, along with
others, are all discussed in detail in the convex optimization notes.

1.1.4 Optimization Algorithm
Finally, we solve our optimization problem using some type of optimization algo-
rithm. In some cases, we are able to solve an optimization problem numerically
using optimality conditions. In other cases, we must use iterative techniques
to solve our optimization problem. Often, we use gradient descent or Newton’s
method to find approximates solutions to optimization problems, but there are
several other algorithms that may be employed. Optimality conditions and
iterative techniques are discussed in the convex optimization notes.

Machine Learning | S. Pohland

Part II

Supervised Learning
Techniques

12

Chapter 2

Introduction to Supervised
Learning Techniques

2.1 Overview of Supervised Learning
In supervised learning, we are given a set of labeled data for which we want to
learn a model representing the relationship among the data. Consider a data set
composed of a sample of n observations with d features each. Each observation
is represented as a point in d-dimensional space (i.e. xi ∈ Rd, i = 1, . . . , n) and
is called a sample point. Each sample point has a corresponding label yi.

2.1.1 Classification & Regression
In classification problems, the labels are categorical and represent the class to
which a sample point belongs. For classification problems, we aim to generate a
model to determine the class of unseen data. For binary classification problems,
there are only two classes and we want to determine whether unseen data belongs
to the given class. In regression problems, the labels are quantitative. For
regression problems, we use labeled training data to generate a model that
predicts the numerical value associated with unseen data.

2.2 Bias & Variance
Recall that for supervised learning problems, we seek to learn a model represent-
ing the relationship among the labeled data. Suppose there is some unknown
function g, which represents the underlying distribution that relates a sample
point, xi, to its label, yi. We are given n sample points, x1, . . . ,xn, with
corresponding labels, y1, . . . , yn. The goal of supervised learning is to find a
hypothesis function, h, that estimates the unknown function, g. There are two
main sources of error present when searching for a hypothesis function:

13

CHAPTER 2. INTRODUCTION TO SUPERVISED LEARNING
TECHNIQUES

1. Bias – Bias is error that results from the inability of the hypothesis func-
tion, h, to perfectly fit the unknown function, g. For example, this may
occur if we try to fit a quadratic function g with a linear function h.

2. Variance – Variance is error that results from fitting random noise in
the data. Even if we choose a quadratic function h to fit the quadratic
function g, the functions may not be exactly the same due to noise.

2.2.1 Implications of Bias & Variance
The following are some important notes about bias and variance:

1. Models with high levels of bias and low levels of variance are more likely
to underfit the data because their assumptions are too restrictive and
inexpressive to fit the underlying data distribution well.

2. Models with high levels of variance and low levels of bias are more likely
to overfit the data because they are prone to fitting the noise of the data,
rather than the underlying distribution, due to their weak assumptions.

3. The training error reflects the bias but not the variance, while the valida-
tion and test error reflect both the bias and the variance.

4. In general, increasing the amount of training data reduces the training ac-
curacy but increases the validation/test accuracy. For many distributions,
the variance goes to zero as the number of sample points goes to infinity.
If the hypothesis, h, can exactly fit the underlying distribution, g, then
for many distributions, bias also goes to zero as the number of sample
points goes to infinity. However, if the model cannot fit the underlying
distribution well enough, then bias remains high.

5. Adding a feature with good predictive power generally reduces bias, but
adding any feature increases variance. Therefore, it is generally not bene-
ficial to add new features if they are uncorrelated with the sample labels
or if they are linear combinations of already existing features. It may also
not be good to add new features that are particularly noisy.

6. Noise in the training set affects bias and variance, while noise in the test
set only affects an error that cannot be reduced by changing our model.

7. We cannot precisely measure bias and variance of real-world data because
we do not know the underlying probability distributions. However, if we
generate synthetic data from known probability distributions and generate
noise from a known probability distribution, then we can compute the
bias and variance of the synthetic data. This allows us to gain additional
insight into our learning algorithms.

Machine Learning | S. Pohland

CHAPTER 2. INTRODUCTION TO SUPERVISED LEARNING
TECHNIQUES

2.2.2 Feature Selection
As we stated in the previous section, adding a feature with strong predictive
power reduces bias, but all features increase variance. We want to identify and
remove poorly predictive features to reduce variance, which should result in less
overfitting and smaller test errors. This also leads to simpler models that are
more interpretable and can increase the speed of prediction on test points.

Recall that we assume each sample point has d features. To choose the true
best subset of features to use, we would need to try all 2d− 1 nonempty subsets
of features and use validation to determine which subset results in the best
classifier. This would give us the best subset of features, but this method is
infeasible if d is large. There are two computationally feasible heuristics we
often use to determine a good subset of features that is not necessarily optimal:

1. Forward stepwise selection – In forward stepwise selection, we start
with 0 features and repeatedly add the "best" feature until validation
errors start to increase. To determine the best feature at each iteration,
we train a model for each feature that is not already being used and
choose the best feature via validation. In forward stepwise selection, we
train O(d2) models instead of O(2d) models, which is much more feasible.

2. Backward stepwise selection – In backward stepwise selection, we start
with all d features and repeatedly remove the "worst" feature until valida-
tion error stops decreasing. To determine the worst feature at each iter-
ation, we train a model with each remaining feature removed and choose
the feature whose removal gives the largest reduction in validation error.
In backward stepwise selection, we again train O(d2) models.

Generally, forward stepwise selection is better to use if we believe that only
a small portion of the entire set of features provides strong predictive power.
Conversely, backward stepwise selection is better to use if we believe that a large
portion of the set of features provides strong predictive power.

2.3 Receiver Operating Characteristics

2.3.1 Outcomes of Binary Classifier
In binary classification problems, data samples are either in the class of interest
or not in the class. Data samples that are within a given class are referred to as
positive samples, and samples that are not in the given class are referred to as
negative samples. For each data sample, the binary classifier predicts whether
that sample is in the class (positive) or not in the class (negative). This then
leads to four possible outcomes, which are shown in figure 2.1. From these
four outcomes, we define the true positive rate, true negative rate, false
positive rate, and false negative rate, as shown on the following page.

Machine Learning | S. Pohland

CHAPTER 2. INTRODUCTION TO SUPERVISED LEARNING
TECHNIQUES

Figure 2.1: A binary classifier has four possible outcomes: true
positive, true negative, false positive, and false negative.

True Positive Rate =
Number of true positives

Total number of positive samples

True Negative Rate =
Number of true negatives

Total number of negative samples

False Positive Rate =
Number of false positives

Total number of negative samples

False Negative Rate =
Number of false negatives

Total number of positive samples

Note that the true positive rate and false negative rate sum to one, and the
true negative rate and false positive rate sum to one. We also refer to the true
negative rate as the specificity and the true positive rate as the sensitivity.

2.3.2 ROC Curve
Receiver operating characteristic (ROC) curves are used to evaluate a
trained classifier. A ROC curve shows the true positive rate versus the false
positive rate for a range of settings. Figure 2.2 displays a sample ROC curve for
an arbitrary classifier. The area under the ROC curve provides a rough measure
of the classifier’s effectiveness. For a perfect classifier, the area under the ROC
curve is one, while for a random classifier, the area is one half.

The ROC curve can be used to choose model parameters based on the relative
importance of the false positive rate versus the false negative rate. If we deem
false negatives worse than false positives, we would choose parameters that give
us a point on the curve with higher sensitivity that is further from the x-axis.
Conversely, if we deem false positives worse, we would choose parameters that
give us a point on the curve with higher specificity that is closer to the y-axis.

Machine Learning | S. Pohland

CHAPTER 2. INTRODUCTION TO SUPERVISED LEARNING
TECHNIQUES

Figure 2.2: The ROC curve is a plot of the true positive rate
versus the false positive rate for test sets. From the ROC curve,
you can read off the true positive rate (sensitivity), the true
negative rate (specificity), the false positive rate, and the false
negative rate. Note that while this example is concave, the ROC
curve can be concave, convex, or neither convex nor concave.

Machine Learning | S. Pohland

Chapter 3

Linear Classifiers

3.1 Decision Boundaries

3.1.1 General Decision Boundaries
Consider a data set of n d-dimensional sample points: {x1, . . . ,xn}. Each
sample point, xi ∈ Rd, belongs to a class, Ci. We will assume that there are
only two classes and that every point is either in class C or not in class C.

A decision boundary is a boundary chosen by a classifier to separate items
in different classes. Many classifiers compute a decision function, f , which is
also known as a predictor function or discriminant function. The goal of
this function is to map a point in the feature space to a scalar value such that{

f(x) > 0 if x ∈ C
f(x) ≤ 0 if x 6∈ C

.

If the classifier uses a decision function, the decision boundary is defined as

{x ∈ Rd : f(x) = 0}.

3.1.2 Linear Decision Boundaries
For a d-dimensional feature space, linear decision functions have the form

f(x) = wTx+ α,

where w ∈ Rd is a weight vector and α ∈ R is a bias term. For this linear
decision function, the decision boundary is the following hyperplane:

H = {x ∈ Rd : wTx+ α = 0}.

If x and y are two points on the hyperplane H, then it is easy to show that
wT (y − x) = 0. This tells us that w is the normal vector of the hyperplane

18

CHAPTER 3. LINEAR CLASSIFIERS

H. The signed distance from any point z to the hyperplane H is

d =
wTz + α

||w||2
.

The signed distance is positive if z is on the side of the hyperplane that the
normal vector, w, points in. It is negative if it is on the opposite side.

3.1.3 Linearly Separable
Input data is considered linearly separable if there exists a hyperplane that
separates all of the sample points in class C from points not in class C. Figure
3.1 depicts two sets of data: one that is linearly separable and one that is not.

Figure 3.1: In the image on the left, there is a hyperplane that
separates the data in the blue class from the data in the orange
class, so the data is linearly separable. In the image on the
right, the data is separable, but it cannot be separated by a
hyperplane, so it is not linearly separable.

3.2 Centroid Method
There are several different linear classification methods. One linear classification
method is the centroid method, which is performed as follows:

1. Compute the mean, µC , of all of the points in class C and the mean, µX ,
of all of the points not in class C (i.e. points in C̄).

2. Define the decision function as the hyperplane that bisects the line segment
connecting µC and µX . More concretely, it is defined such that

f(x) = (µC − µX)Tx− 1

2
||µC − µX ||22.

3. Classify a point x by assigning a label y such that

y =

{
C if f(x) > 0

C̄ if f(x) ≤ 0
.

Machine Learning | S. Pohland

CHAPTER 3. LINEAR CLASSIFIERS

Figure 3.2: The data is composed of sample points in class C,
which are marked with blue C’s, and points not in class C,
which are marked with red X’s. The centroid method computes
the mean of the data points in class C, which is indicated with
a blue dot, and the mean of the data points not in class C,
which is indicated with a red dot. The decision function is the
hyperplane that bisects the line segment connecting the means.

Figure 3.2 provides an example of the centroid method. Notice that, in this
example, the centroid method does not perfectly classify the sample points,
despite the fact that the given data is linearly separable. This error is due to
outliers in the data. In general, the centroid method is not guaranteed to find
a decision boundary that completely separates linearly separable data.

3.3 Perceptron Algorithm
Another linear classification method is the perceptron algorithm. In contrast
to the centroid algorithm, the perceptron algorithm always correctly classifies
linearly separable data. Consider a data set composed of n d-dimensional sample
points, x1, . . . ,xn. Assume xi has corresponding label yi defined such that

yi =

{
1 if xi ∈ C
−1 if xi 6∈ C

.

3.3.1 Perceptron Algorithm Without Bias
We will first discuss the perceptron algorithm with no bias term, assuming that
the decision boundary passes through the origin. The goal of the perecptron
algorithm with no bias is to find the weight vector w such that{

wTxi > 0 if yi = 1

wTxi ≤ 0 if yi = −1
.

We can express these two constraints on the weight vector as a single constraint:

yi(w
Txi) ≥ 0.

Machine Learning | S. Pohland

CHAPTER 3. LINEAR CLASSIFIERS

Let z be the prediction for some point x in the feature space, which has the true
label y. For the perceptron algorithm, we define the following loss function:

L(z, y) :=

{
0 if yz ≥ 0

−yz otherwise
.

If x is correctly labeled by the classifier, then z and y would have the same signs,
so yz would be positive and we would not incur any loss. If x is incorrectly
labeled by the classifier, then z and y would have opposite signs, so yz would
be negative and we would incur a loss of −yz, which is a positive value.

For a sample point xi with true label yi, the perceptron algorithm with no
bias predicts the label zi = wTxi. For this algorithm, we then define the risk
function as the sum of the losses for the predictions of all the sample points:

R(w) :=

n∑
i=1

L(wTxi, yi).

Given a weight vector w, let V be the set of misclassified points, which is defined
as V := {i ∈ {1, . . . , n} : yi(w

Txi) < 0}. We can now express the risk as

R(w) =
∑
i∈V
−yi(wTxi).

With this risk function, the optimal weight vector ŵ is defined as

ŵ = arg min
w∈Rd

R(w).

Note that the perecptron risk function is not smooth, but it is convex. To solve
this optimization problem, we can use gradient descent with the update rule

wk+1 = wk − η∇wR(w)
∣∣
w=wk

,

where η is a positive step size that determines the rate of convergence. To use
this algorithm, we first need to compute the gradient of the risk function:

∇wR(w) = ∇w

(∑
i∈V
−yi(wTxi)

)
=
∑
i∈V
∇w
(
−yi(wTxi)

)
=
∑
i∈V
−yixi.

This now allows us to write the perceptron algorithm shown in algorithm 1. The
issue with this algorithm is that each step takes O(nd) time. We can speed up
this algorithm by using stochastic gradient descent, instead of batch gradient
descent. With stochastic gradient descent, we pick only one misclassified sample
at each step, rather than performing gradient descent using all misclassified
samples. With this modification, each step takes O(d) time instead of O(nd).
This modified algorithm is provided in algorithm 2.

Machine Learning | S. Pohland

CHAPTER 3. LINEAR CLASSIFIERS

Algorithm 1: Perceptron Algorithm with Batch Gradient Descent
1 w ← arbitrary non-zero starting point
2 η ← desired step size (learning rate)
3 while R(w) > 0 do
4 V ← set of indices for which yi(wTxi) < 0
5 w ← w + η

∑
i∈V yixi

6 end
7 return w

Algorithm 2: Perceptron Algorithm with Stochastic Gradient Descent
1 w ← arbitrary non-zero starting point
2 η ← desired step size (learning rate)
3 while yi(wTxi) < 0 for some i do
4 w ← w + ηyixi
5 end
6 return w

3.3.2 Perceptron Algorithm With Bias
Previously, we assumed that the separating hyperplane passed through the ori-
gin, which allowed us to assume α = 0. Now we will no longer assume that the
separting hyperplane passes through the origin. To deal with this difference, we
define a new weight vector w̃ ∈ Rd+1 and sample point x̃ ∈ Rd+1 such that

w̃ =

[
w
α

]
and x̃ =

[
x
1

]
.

Now we can express our decision function as f(x̃) = w̃T x̃. We can use this
decision function with our previous perceptron algorithm to find a separating
hyperplane that does not pass through the origin.

3.3.3 Convergence of Perceptron Algorithm
If the training data is linearly separable, then the perceptron algorithm will per-
fectly classify the training data, resulting in zero training error. Furthermore,
the perceptron algorithm will find a separating hyperplane that correctly classi-
fies the data in at most O(r2/γ2) iterations, where r = maxi ||xi||2 is the radius
of the data and γ is the maximum margin (i.e. the distance from the decision
boundary to the nearest sample point). If the data is not linearly separable,
then the algorithm never terminates.

Machine Learning | S. Pohland

Chapter 4

Support Vector Machines
(SVMs)

4.1 Hard-Margin SVM

4.1.1 Maximum Margin Classifier
Consider a data set of n d-dimensional sample points: {x1, . . . ,xn}. Each
sample point, xi ∈ Rd, has a corresponding label yi ∈ {1,−1}. Recall that the
decision boundary for any linear classifier can be expressed as the hyperplane
H = {x ∈ Rd : wTx + α = 0}. The maximum margin classifier maximizes
the distance from the linear decision boundary to the closest training point on
either side of the decision boundary. The gap between the decision boundary
and the closest training point on each side is called the margin. Figure 4.1
displays a maximum margin classifier, which demonstrates these concepts.

Figure 4.1: The hyperplane H = {x ∈ Rd : wTx+ α = 0} for a
maximum margin classifier provides the maximum distance be-
tween the boundary and the nearest sample point. This distance
is called the margin and is equal on either side of the boundary.

23

CHAPTER 4. SUPPORT VECTOR MACHINES (SVMS)

4.1.2 Hard-Margin SVM Problem
The goal of the hard-margin SVM problem is to find the weight vector, w, and
bias, α, such that the linear decision boundary, H = {x ∈ Rd : wTx+ α = 0},
provides the maximum margin classification. In order to ensure that the points
are correctly classified, we enforce the following set of constraints:{

wTxi + α ≥ 1 if yi = 1

wTxi + α ≤ −1 if yi = −1
for i = 1, . . . , n.

We can combine these two sets of constraints into a single constraint:

yi(w
Txi + α) ≥ 1 for i = 1, . . . , n.

Recall that the signed distance from any point xi to the hyperplane H is

di =
wTxi + α

||w||2
.

Therefore, the unsigned distance from any point xi to the hyperplane H is

|di| =
|wTxi + α|
||w||2

.

Recall that the margin is the distance from the decision boundary to the nearest
sample point. Therefore, the margin is the smallest unsigned distance across all
n sample points. Based on our constraints for the sample points, we know

|wTxi + α| ≥ 1, ∀i ∈ {1, . . . , n}.

Therefore, we have the following constraint on the unsigned distance:

|di| =
|wTxi + α|
||w||2

≥ 1

||w||2
, ∀i ∈ {1, . . . , n}.

This implies that the margin can never be less than 1
||w||2 . Therefore, to maxi-

mize the margin, we want to maximize 1
||w||2 , which is equivalent to minimizing

||w||2. This function is not smooth, so we will instead minimize the smooth
function ||w||22. Now we can express the hard-margin SVM problem as

min
w,α
||w||22

s.t. yi(w
Txi + α) ≥ 1, i = 1, . . . , n

After finding the optimal weight vector ŵ ∈ Rd and optimal bias term α̂ ∈ R
that solve this problem, we can express the hard-margin SVM decision rule as

f(x) =

{
1 if ŵTx+ α̂ ≥ 0

−1 otherwise
.

Machine Learning | S. Pohland

CHAPTER 4. SUPPORT VECTOR MACHINES (SVMS)

As with the perceptron algorithm, the hard-margin SVM problem can achieve
zero training error on any linearly separable data set, but it will never find a
solution for a data set that is not linearly separable. As another note, for a
classifier with weight vector ŵ, the margin is exactly 1

||ŵ||2 and there is a space
of width 2

||ŵ||2 around the linear decision boundary that contains no sample
points. An example of a hard-margin SVM classifier is shown in figure 4.2.

Figure 4.2: This is an example of a hyperplane obtained through
a hard-margin SVM classification problem. The decision bound-
ary is given by H = {x ∈ Rd : wTx+α = 0}. If x is in class C,
then wTx+ α ≥ 1. If x is not in class C, then wTx+ α ≤ −1.

4.1.3 Support Vectors
A support vector is defined as a training sample that lies on the margin. A
support vector, x+, in the given class satisfies ŵTx+ + α = 1, and a support
vector, x−, not in the given class satisfies ŵTx−+α = −1. The example shown
in figure 4.2 has two support vectors in class C and one not in this class.

Theorem: There must be at least one support vector for each class.

Proof: Let’s assume that there is no support vector for class C. We could either
define C as C := {i ∈ {1, . . . , n} : yi = 1} or C := {i ∈ {1, . . . , n} : yi = −1}.
The proof holds for either definition of C. This assumption implies that

|ŵTxi + α̂| > 1, ∀i ∈ C.

There is some constant ε > 1 for which we can write this strict inequality as

|ŵTxi + α̂| ≥ ε, ∀i ∈ C.

Now let’s suppose we have new parameters w̄ and ᾱ, which we will define as

w̄ :=
2ŵ

1 + ε
and ᾱ :=

2α̂

1 + ε
.

Machine Learning | S. Pohland

CHAPTER 4. SUPPORT VECTOR MACHINES (SVMS)

For these new parameters, we can notice that

|w̄Txi + ᾱ| =

∣∣∣∣∣
(

2ŵ

1 + ε

)T
xi +

2α̂

1 + ε

∣∣∣∣∣ =
2

1 + ε

∣∣∣ŵTxi + α̂
∣∣∣ ≥ 2ε

1 + ε
, ∀i ∈ C.

Note that 2ε
1+ε > 1 for all ε > 1. Therefore, the parameters w̄ and ᾱ satisfy

|w̄Txi + ᾱ| > 1, ∀i ∈ C.

This implies that w̄ and ᾱ satisfy the constraints of the hard-margin SVM
problem. Now notice that we can also express the squared norm of w̄ as

||w̄||22 =

∣∣∣∣∣
∣∣∣∣∣ 2ŵ

1 + ε

∣∣∣∣∣
∣∣∣∣∣
2

2

=

(
2

1 + ε

)2

||ŵ||22.

Note that 2
1+ε < 1 for all ε > 1. Therefore, ||w̄||22 < ||ŵ||22. This implies that

w̄ and ᾱ result in a linear classifier with a larger margin than the one defined
by the parameters ŵ and α̂. This contradicts our assumption that ŵ and α̂ are
the optimal solutions to the hard-margin SVM problem. Now we have proven
by contradiction that there is at least one support vector for each class.

4.2 Soft-Margin SVM
Hard-margin SVMs are sensitive to outliers and fail if the data is not linearly
separable. Soft-margin SVMs address this issue by allowing some points to
violate the margin. For hard-margin SVMs, we enforced the constraints:

yi(w
Txi + α) ≥ 1 for i = 1, . . . , n.

For soft-margin SVMs, we will instead use the constraints:

yi(w
Txi + α) ≥ 1− ξi, i = 1 . . . , n

ξi ≥ 0, i = 1 . . . , n

In these constraints, ξi is a slack variable that is zero if the sample point xi is
correctly classified and positive if xi violates the margin. The magnitude of ξi
indicates how much xi violates the margin. This is demonstrated in figure 4.3.

For the soft-margin SVM, we still want to minimize ||w||22, but now we also want
to add a loss term to the objective function to limit how much points violate
the margin. The soft-margin SVM problem can then be expressed as

min
w,α,ξ

||w||22 + c

n∑
i=1

ξi

s.t. yi(w
Txi + α) ≥ 1− ξi, i = 1 . . . , n

ξi ≥ 0, i = 1 . . . , n

Machine Learning | S. Pohland

CHAPTER 4. SUPPORT VECTOR MACHINES (SVMS)

Figure 4.3: This data is not linearly separable, so hard-margin
SVM would fail to classify this data. By introducing slack vari-
ables, soft-margin SVM allows two of the points to violate the
margin. Notice that we no longer require support vectors.

In this optimization problem, the constant c is a scalar regularization hyperpa-
rameter, which is chosen using validation. If c is small, then we care more about
maximizing the margin, 1

||w||2 , while allowing more points in the training data
to violate the margin. We generally get decision boundaries that are less sensi-
tive to outliers, which gives us the risk of underfitting. If c is large, then we care
more about limiting the extent to which sample points violate the margin, while
shrinking the size of the margin. We generally get decision boundaries that are
more sensitive to outliers, which gives us the risk of overfitting. As c becomes
larger, the soft-margin SVM problem becomes closer to the hard-margin SVM
problem. In the limit c→∞, we recover the hard-margin SVM.

4.3 Adding Features
To improve the results for hard-margin or soft-margin SVMs, we can add ad-
ditional features. If we augment the data with additional features, the optimal
value of the objective function will either decrease or stay the same, but it can-
not increase. This is because we can always use the optimal weight vector ŵ
for the original data and set ŵi = 0 for the weights corresponding to added
features. Therefore, the new optimum must be at least as good as the original.

Again, assume we are working with a data set of n d-dimensional sample points:
{x1, . . . ,xn}. So far, we have considered linear decision boundaries to classify
this data. We said these points are linearly separable if there exists a hyperplane
that separates all of the sample points in a given class from points not in this
class. While SVMs generally generate linear decision boundaries, we can also use
SVMs to find nonlinear decision boundaries by generating nonlinear features.

Machine Learning | S. Pohland

CHAPTER 4. SUPPORT VECTOR MACHINES (SVMS)

4.3.1 Parabolic Lifting Map
One way to find nonlinear decision boundaries by generating nonlinear features
is by using a parabolic lifting map φ : Rd → Rd+1, which is defined such that

φ(x) =

[
x
||x||22

]
.

With the parabolic lifting map, we can find a linear classifier in the φ-space,
which induces a sphere classifier in the x-space. Note that φ(x1), . . . , φ(xn) are
linearly separable if and only if x1, . . . ,xn are separable by a hypersphere. The
role of the parabolic lifting map in SVMs is demonstrated in figure 4.4.

Figure 4.4: On the left, the data is shown in x-space, and on
the right, the data is shown in φ-space. In x-space, the data
is not linearly separable, but it is separable by a hypersphere.
This implies that in φ-space, the data is linearly separable.

4.3.2 Ellipsoid & Hyperboloid Decision Boundaries
We just showed that we can use SVMs to separate data using a hypersphere. We
can also use SVMs to separate data with an axis-aligned ellipsoid or hyperboloid.
To do so, we can use the map φ : Rd → R2d, which is defined such that

φ(x) =
[
x21 . . . x2d x1 . . . xd

]T
.

The linear classifier in φ-space can then be expressed as

f(x) = wTφ(x) + α,

where w ∈ R2d is the weight vector and α ∈ R is the bias. We can generalize
this to ellipsoids and hyperboloids that are not necessarily axis-aligned. To do
so, we can use the map φ : Rd → R(d2+3d)/2, which is defined such that

φ(x) =
[
x21 . . . x2d x1x2 . . . x1xd . . . x1 . . . xd

]T
.

Again, the linear classifier in φ-space can then be expressed as

f(x) = wTφ(x) + α,

where w ∈ R(d2+3d)/2 is the weight vector and α ∈ R is the bias term.

Machine Learning | S. Pohland

CHAPTER 4. SUPPORT VECTOR MACHINES (SVMS)

4.3.3 Polynomial Decision Boundaries
We can also use SVMs to separate data using a polynomial decision boundary.
A cubic polynomial function in R2 uses the map φ : R2 → R9 defined such that

φ(x) =
[
x31 x32 x21x2 x1x

2
2 x21 x22 x1x2 x1 x2

]T
.

This is useful because a hyperplane can only separate a linear function into at
most two regions, while a hyperplane can separate a quadratic function into at
most three regions and a cubic function into at most four regions. Figure 4.5
gives an example of hard-margin SVM using a cubic polynomial function.

Figure 4.5: We are not able to separate the one-dimensional
data {x1, . . . ,xn} with a single line. However, if we add the
features x2i and x3i , a line can separate the cubic function into
four segments that perfectly classify the training data.

Note that if we have sample points with d features and want to use a polynomial
decision boundary of degree p, then we need to use a map φ : Rd → RO(dp). This
increases the number of feature significantly and can make the SVM problem
computationally infeasible to solve as the degree or number of features increases.

Machine Learning | S. Pohland

Chapter 5

Bayes Decision Rule

5.1 Two Classes
Consider a system composed of d-dimensional feature vectors and corresponding
labels. Let X be a random feature vector with a random label Y . For now, we
will assume there are only two classes and that the range of Y is the discrete
set {1,−1}. The range of X, which we’ll denote X , is some subset of Rd. We
define the decision rule as the map r : Rd → {1,−1}, which maps a feature
vector to the label 1 or −1, corresponding to the class of the sample point.

5.1.1 Bayes Decision Rule: Asymmetric Loss
The risk of a decision function is defined as the expected loss. We will initially
assume the range ofX is a countable subset of Rd and that X can be modeled by
a discrete distribution. Let x be a realization of X and y be a realization of Y .
The loss of the decision function for feature vector x with label y is L(r(x), y).
Assuming we are working with discrete distributions, the risk is given by

R(r) = EX,Y [L(r(x), y)] =
∑
x∈X

∑
y∈{1,−1}

L(r(x), y)pX,Y (x, y).

Using Baye’s rule, we can also express the risk for a decision function as

R(r) =
∑
x∈X

∑
y∈{1,−1}

L(r(x), y)pY |X(y|x)pX(x)

=
∑
x∈X

(
L(r(x), 1)pY |X(1|x)pX(x) + L(r(x),−1)pY |X(−1|x)pX(x)

)
=
∑
x∈X

(
L(r(x), 1)pY |X(1|x) + L(r(x),−1)pY |X(−1|x)

)
pX(x).

30

CHAPTER 5. BAYES DECISION RULE

We want to find the decision rule that results in the lowest risk. We’ll denote
the optimal decision rule r∗. From our definition of risk, r∗ can be expressed as

r∗ = arg min
r:X→{1,−1}

R(r)

= arg min
r:X→{1,−1}

∑
x∈X

(
L(r(x), 1)pY |X(1|x) + L(r(x),−1)pY |X(−1|x)

)
pX(x).

For a single sample point x, the optimal decision rule r∗(x) satisfies

r∗(x) = arg min
r(x)∈{1,−1}

(
L(r(x), 1)pY |X(1|x) + L(r(x),−1)pY |X(−1|x)

)
pX(x)

= arg min
r(x)∈{1,−1}

(
L(r(x), 1)pY |X(1|x) + L(r(x),−1)pY |X(−1|x)

)
.

If we assume that we do not incur loss for correctly classified samples, then
L(z, y) = 0 when z = y. Under this condition, the optimal decision rule satisfies

r∗(x) =

{
1 if L(−1, 1)pY |X(1|x) > L(1,−1)pY |X(−1|x)

−1 otherwise
.

This says that we should choose 1 if the expected loss for choosing −1 is higher
and −1 if the expected loss for choosing 1 is higher. This decision rule is known
as Bayes decision rule. We can equivalently express this decision rule as

r∗(x) = arg min
y∈{1,−1}

L(y,−y)pY |X(−y|x).

The Bayes decision boundary corresponding to this decision rule is given by

{x ∈ X : L(−1, 1)pY |X(1|x) = L(1,−1)pY |X(−1|x)}.

Extension to Continuous Distributions

If we are working with continuous distributions, instead of discrete distributions,
then we define the risk function using the probability density function (PDF),
fX(x), instead of the probability mass function (PMF), pX(x). Instead of
summing over the range X , we instead need to integrate over X . The optimal
decision rule and decision boundary are nearly the same as in the discrete case.
In the continuous case, we can express Bayes decision rule as

r∗(x) = arg min
y∈{1,−1}

L(y,−y)fY |X(−y|x).

Similarly, Bayes decision boundary in the continuous case is given by

{x ∈ X : L(−1, 1)fY |X(1|x) = L(1,−1)fY |X(−1|x)}.

Machine Learning | S. Pohland

CHAPTER 5. BAYES DECISION RULE

5.1.2 Bayes Decision Rule: Symmetric Loss
Previously, we did not make any assumptions about the loss function, L. We
will now assume that the loss function is symmetric. When L is not symmetric
(i.e. L(−1, 1) 6= L(1,−1)), we need to weigh the posterior probabilities with
the losses. When the loss function is symmetric (i.e. L(−1, 1) = L(1,−1)),
we simply pick the class with the largest posterior probability. One common
symmetric loss function is the zero-one loss function, which is defined as

L(z, y) =

{
1 if z 6= y

0 if z = y
.

This says that we incur a loss of 1 for incorrectly classified samples and 0 for
correctly classified samples. Because we do not incur loss for correctly classified
samples with this loss function, we can express the Bayes decision rule as

r∗(x) = arg min
y∈{1,−1}

pY |X(−y|x) = arg max
y∈{1,−1}

pY |X(y|x).

Using Bayes rule, this decision rule can equivalently be expressed as

r∗(x) = arg max
y∈{1,−1}

pX|Y (x|y)pY (y)

pX(x)
.

Removing the constant term, we can also express the decision rule as

r∗(x) = arg max
y∈{1,−1}

pX|Y (x|y)pY (y).

The Bayes decision boundary corresponding to this decision rule is then

{x ∈ X : pY |X(1|x) = pY |X(−1|x)} or

{x ∈ X : pX|Y (x|1)pY (1) = pX|Y (x| − 1)pY (−1)}.

Extension to Continuous Distributions

If we are working with continuous distributions, instead of discrete distributions,
the optimal decision rule and decision boundary are nearly the same. In the
continuous case, we can express Bayes decision rule as

r∗(x) = arg max
y∈{1,−1}

fY |X(y|x).

Using Bayes rule, we can also express this decision rule as

r∗(x) = arg max
y∈{1,−1}

fX|Y (x|y)pY (y).

Similarly, Bayes decision boundary in the continuous case is given by

{x ∈ X : fY |X(1|x) = fY |X(−1|x)} or

{x ∈ X : fX|Y (x|1)pY (1) = fX|Y (x| − 1)pY (−1)}.

Machine Learning | S. Pohland

CHAPTER 5. BAYES DECISION RULE

5.1.3 Bayes Risk
The Bayes risk, which is also known as the optimal risk, is the risk associated
with the Bayes classifier. Recall that we expressed the risk of a decision rule as

R(r) =
∑
x∈X

(
L(r(x), 1)pY |X(1|x) + L(r(x),−1)pY |X(−1|x)

)
pX(x).

Assuming that we do not incur loss for correctly classified samples, we found
that the Bayes decision rule must satisfy

r∗(x) = arg min
y∈{1,−1}

L(y,−y)pY |X(−y|x).

Because we assume that we do not incur loss for correctly classified samples,
L(r(x), y) = 0 if r(x) = y. Therefore, the Bayes (optimal) risk is given by

R(r∗) =
∑
x∈X

(
min

y∈{1,−1}
L(y,−y)pY |X(−y|x)

)
pX(x)

= min
y∈{1,−1}

∑
x∈X

L(y,−y)pY |X(−y|x)pX(x).

Using Bayes rule, we can equivalently express the Bayes risk as

R(r∗) = min
y={1,−1}

∑
x∈X

L(y,−y)pX|Y (x| − y)pY (−y).

Note that Bayes risk is zero when the conditional class distributions pX|Y (x|1)
and pX|Y (x| − 1) do not overlap or if one of the prior probabilities pY (1) or
pY (−1) is equal to one. The Bayes risk does not depend on the specific training
data; even if the data is linearly separable or the Bayes decision rule perfectly
classifies the training data, we generally still have non-zero risk.

Extension to Continuous Distributions

If we are working with continuous distributions, instead of discrete distributions,
then we define the risk function using the probability density function (PDF),
fX(x), and conditional PDF, fY |X(y|x). Instead of summing over the range
X , we need to integrate over X . The Bayes (optimal) risk is nearly the same as
in the discrete case. In the continuous case, the risk can be expressed as

R(r∗) = min
y∈{1,−1}

∫
X
L(y,−y)fY |X(−y|x)fX(x) dx

= min
y={1,−1}

∫
X
L(y,−y)fX|Y (x| − y)pY (−y) dx.

Machine Learning | S. Pohland

CHAPTER 5. BAYES DECISION RULE

5.2 Multiple Classes
Again, consider a system composed of d-dimensional feature vectors and corre-
sponding labels. Let X be a random feature vector with a random label Y . We
will now assume that there are an arbitrary number of classes and the range of
Y is C, where C is the set of possible classes. We define the decision rule as
the map r : Rd → C, which maps a feature vector to a label in the set of classes.

5.2.1 Bayes Decision Rule: Asymmetric Loss
We can extend the definition of the Bayes decision rule with asymmetric loss to
handle an arbitrary number of classes. Again, the loss of the decision function
for feature vector x with label y is denoted L(r(x), y). For the two class case
with discrete distributions, we said the optimal decision rule is given by

r∗(x) = arg min
y∈{1,−1}

L(y,−y)pY |X(−y|x).

We can extend this definition for systems with more than two classes. For a
discrete feature space, the Bayes optimal decision rule is given by

r∗(x) = arg min
z∈C

∑
y∈C

L(z, y)pY |X(y|x).

Similarly, for a continuous feature space, the Bayes optimal decision rule is

r∗(x) = arg min
z∈C

∑
y∈C

L(z, y)fY |X(y|x).

5.2.2 Bayes Decision Rule: Symmetric Loss
We can also extend the definition of the Bayes decision rule with symmetric loss
for the two class case to handle more than two classes. For the two class case
with discrete distributions, we said that the optimal decision rule is given by

r∗(x) = arg max
y∈{1,−1}

pX|Y (x|y)pY (y).

We can extend this definition for systems with more than two classes. For a
discrete feature space, the Bayes optimal decision rule is given by

r∗(x) = arg max
y∈C

pX|Y (x|y)pY (y).

Similarly, for a continuous feature space, the Bayes optimal decision rule is

r∗(x) = arg max
y∈C

fX|Y (x|y)pY (y).

Machine Learning | S. Pohland

CHAPTER 5. BAYES DECISION RULE

5.2.3 Bayes Risk
Discrete Distributions

Recall that the Bayes risk is the risk associated with the Bayes classifier. For
an arbitrary number of classes, we can express the risk of a decision function as

R(r) =
∑
x∈X

∑
y∈C

L(r(x), y)pY |X(y,x)pX(x).

For the discrete multi-class case, the Bayes optimal decision rule is given by

r∗(x) = arg min
z∈C

∑
y∈C

L(z, y)pY |X(y|x).

Therefore, the Bayes (optimal) risk can be expressed as

R(r∗) = min
z∈C

∑
x∈X

∑
y∈C

L(z, y)pY |X(y|x)pX(x).

Using Bayes rule, we can also express the Bayes risk as

R(r∗) = min
z∈C

∑
x∈X

∑
y∈C

L(z, y)pX|Y (x|y)pY (y).

Continuous Distributions

Similarly, for the continuous multi-class case, we can express the risk as

R(r) =

∫
X

∑
y∈C

L(r(x), y)fY |X(y,x)fX(x)

 dx.

For the continuous multi-class case, the Bayes optimal decision rule is

r∗(x) = arg min
z∈C

∑
y∈C

L(z, y)fY |X(y|x).

Therefore, the Bayes (optimal) risk can be expressed as

R(r∗) = min
z∈C

∫
X

∑
y∈C

L(z, y)fY |X(y|x)fX(x)

 dx.

Using Bayes rule, we can express the Bayes risk as

R(r∗) = min
z∈C

∫
X

∑
y∈C

L(z, y)fX|Y (x|y)pY (y)

 dx.

Machine Learning | S. Pohland

CHAPTER 5. BAYES DECISION RULE

5.3 Generative & Discriminative Models
Bayes decision rule is the optimal decision rule that provides the lowest possible
risk for a given system. If we know the underlying probability distributions
of our data, then we can construct the ideal probabilistic classifier. However,
in reality, we rarely know the probability distributions underlying real-world
datasets. Some classifiers try to approximate Bayes decision rule by generating
probability models from data. There are two main types of these models:

1. Generative models – Generative models assume a form of the likelihood
distributions, P ({X = x|Y = c}), and prior probabilities, P ({Y = c}),
for each class c ∈ C and use data to fit the parameters of these probability
models. These probability distributions can then be used to approximate
Bayes decision rule. If desired, an estimate of the posterior probability,
P ({Y = c|X = x}), for each class can be obtained through Bayes theorem.

Example: Gaussian discriminant analysis (Section 8.1)

2. Discriminative models – Discriminative models assume a form of the
posterior probability P (Y = c|X = x) for each class c ∈ C directly and
use data to fit the parameters of this model. This probability distribution
can then be used to approximate Bayes decision rule.

Example: Logistic regression (Section 9.5)

An alternative to approximating Bayes decision rule by estimating posterior
probabilities is to find a decision boundary directly without considering under-
lying probability distributions, as we did with support vector machines.

Machine Learning | S. Pohland

Chapter 6

Multivariate Gaussians

6.1 Overview of Multivariate Gaussians
The multivariate normal distribution, multivariate Gaussian distribution, or
joint normal distribution is a generalization of the one-dimensional (univariate)
normal distribution to higher dimensions. For more information on the normal
distribution, please see my notes on Probability & Random Processes. Multi-
variate Gaussians are useful in probability theory and statistics because they
have nice properties. Furthermore, if we have a lot of data, the underlying distri-
bution of datasets resembles a multivariate Gaussian in many cases. Multivari-
ate Gaussians are relevant to our discussion of maximum likelihood estimation
(MLE) in section 7 and our discussion of Gaussian discriminant analysis (GDA)
in section 8.1, so we will first cover some background on these distributions.

6.2 Quadratic Forms
Before discussing multivariate Gaussians, we will first discuss quadratic forms.
If x is an n-dimensional vector, then ||x||22 = xTx is a quadratic function whose
isosurfaces are spheres in n-dimensional space. If A is a symmetric positive
definite matrix, then ||A−1x||22 = xTA−2x is the quadratic form of the matrix
A−2 and its isosurfaces are ellipsoids in n-dimensional space. The isosurface
||A−1x||22 = 1 is an ellipsoid whose axes are the eigenvectors of the matrix A
and whose radii are the corresponding eigenvalues of A. Figure 6.1 depicts the
isosurfaces for a quadratuc function and for the quadratic form of a matrix A−2.

If λ1, . . . , λn are the eigenvalues of A with corresponding eigenvectors v1, . . . ,vn,
then ||A−1x||22 = 1 is an ellipsoid whose axes are given by v1, . . . ,vn and whose
radii are given by λ1, . . . , λn. If we are instead interested in the isosurface defined
by ||A−1x||22 = c, where c is some constant, then the axes of this ellipsoid are
still given by v1, . . . ,vn but the radii are now

√
cλ1, . . . ,

√
cλn.

37

CHAPTER 6. MULTIVARIATE GAUSSIANS

Figure 6.1: This figure depicts the isosurfaces of two quadratic
functions. x is a 2-dimensional vector andA is a symmetric 2×2
matrix whose eigenvalues are λ1, λ2 and whose corresponding
eigenvectors are v1,v2. The isocontours of ||x||22 are circles,
and ||x||22 = 1 is a circle with radius one, as shown on the left.
The isocontours of ||A−1x||22 are ellipses, and ||A−1x||22 = 1
is an ellipse whose major axis is v1 with radius λ1 and whose
minor axis is v2 with radius λ2, as shown on the right.

6.3 Anisotropic Gaussians
An anisotropic multivariate Gaussian random variable X ∼ N(µ,Σ) with
dimension d has the probability density function (PDF) given by

fX(x) =
1

(2π)d/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

The vector µ is the mean, the matrix Σ is referred to as the covariance matrix,
and the matrix Σ−1 is referred to as the precision matrix. The matrices
Σ ∈ Rd×d and Σ−1 ∈ Rd×d are both symmetric and positive definite. To see
why this is the case, please see my notes on Probability & Random Processes.

6.3.1 Quadratic Form & Isosurfaces
Notice that the PDF of the anisotropic Gaussian random variable can be ex-
pressed as fX(x) = n(q(x)), where n : R → R is an exponential function and
q : Rd → R is a quadratic function defined such that

n(y) =
1

(2π)d/2|Σ|1/2
exp

(
−1

2
y

)
and

q(x) = (x− µ)TΣ−1(x− µ).

Given a monotonic function n : R→ R, the isosurfaces of n(q(x)) are the same
as those of q(x), except they have different isovalues. Therefore, we will focus
on the isosurfaces of the quadratic function q(x).

Machine Learning | S. Pohland

CHAPTER 6. MULTIVARIATE GAUSSIANS

Notice that q(x) is the quadratic form of the matrix Σ−1 with respect to the
vector x − µ. Because Σ is a symmetric matrix, it can be decomposed as
Σ = V ΛV T , where V is an orthogonal matrix composed of the eigenvectors of
Σ and Λ is a diagonal matrix whose diagonal elements are the eigenvalues of Σ.
Because Σ can be decomposed in this way, Σ1/2 = V Λ1/2V T , where Λ1/2 is a
diagonal matrix whose diagonal elements are the square root of the eigenvalues
of Σ. Now we can see that the isosurfaces of q(x) are ellipsoids whose axes are
the eigenvectors of Σ and whose radii are the square root of the eigenvalues of
Σ. Figure 7.3 provides an example of the isosurfaces for an anisotropic Gaussian
PDF. In this example, the axes are shown with respect to x−µ. With respect
to the vector x, the isocontours would be centered at the mean, µ.

Figure 6.2: The image on the left shows an example of the iso-
contours of the quadratic function q(x) describing an anisotropic
Gaussian. The image on the right shows the isocontours of the
PDF fX(x) = n(q(x)) for the same anisotropic Gaussian. No-
tice that the isocontours of fX(x) are the same as those of q(x),
except they have different isovalues.

6.4 Isotropic Gaussians
An isotropic multivariate Gaussian random variable is a multivariate Gaus-
sian with a covariance matrix that can be expressed as a scalar multiple of the
identity matrix (i.e Σ = σ2Id). An isotropic multivariate Gaussian random
variable X ∼ N(µ, σ2Id) with dimension d has the PDF given by

fX(x) =
1(√

2πσ
)d exp

(
−||x− µ||

2
2

2σ2

)
.

Machine Learning | S. Pohland

CHAPTER 6. MULTIVARIATE GAUSSIANS

This PDF can also be expressed as the product of univariate PDFs:

fX(x) =
1(√

2πσ
)d exp

(
− 1

2σ2

d∑
i=1

(xi − µi)2
)

=

d∏
i=1

1√
2πσ

exp

(
− (xi − µi)2

2σ2

)
.

6.4.1 Quadratic Form & Isosurfaces
Notice that the PDF of the isotropic Gaussian random variable can be expressed
as fX(x) = n(q(x)), where n : R→ R is an exponential function and q : Rd → R
is a quadratic function defined such that

n(y) =
1(√

2πσ
)d exp

(
−1

2
y

)
and q(x) =

||x− µ||22
σ2

.

Again, we will focus on the isosurfaces of the quadratic function q(x). Notice
that q(x) is the quadratic form of the matrix Σ−1 = 1

σ2 Id with respect to the
vector x − µ. In the anisotropic case, the isosurfaces of q(x) were ellipsoids
whose axes were the eigenvectors of Σ and whose radii were the square root of
the eigenvalues of Σ. In the isotropic case, every eigenvalue of Σ1/2 is equal to
σ, so the radii of the isosurfaces will all be equal. Therefore, the isosurfaces of
an isotropic Gaussian are spheres with radius σ. Figure 7.2 gives an example of
these isosurfaces for an isotropic Gaussian. The axes are shown with respect to
x− µ. With respect to x, the isocontours would be centered at the mean, µ.

Figure 6.3: This is an example of the isocontours of the
quadratic function q(x) describing an isotropic Gaussian. The
isocontours of the isotropic Gaussian PDF fX(x) = n(q(x)) are
the same as those of q(x) with different isovalues.

Machine Learning | S. Pohland

Chapter 7

Maximum Likelihood
Estimation (MLE)

7.1 Overview of Maximum Likelihood Estimation
Recall that the Bayes decision rule gives us the optimal probabilistic classifier,
but it requires that we know the underlying probability distributions of our data.
In reality, we rarely know these distributions, but we can use the provided data
to estimate them. We will assume a model of the distribution and use maximum-
likelihood estimation to estimate the parameters of this model.

7.1.1 Likelihood Estimators
Suppose we have a data set containing n sample points, x1, . . . ,xn. We will as-
sume these sample points are realizations of the random variables, X1, . . . ,Xn,
which are independent and identically distributed according to the PDF fXi

(xi|θ),
where θ is the parameter vector we want to estimate. Because the random vari-
ables are independent, the likelihood of θ can be expressed as

L(θ;x1, . . . ,xn) := fX1...Xn(x1, . . . ,xn|θ) =

n∏
i=1

fXi
(xi|θ).

In maximum likelihood estimation, we want to find the parameter that
maximizes the likelihood by solving the following optimization problem:

θ̂ = arg max
θ

L(θ;x1, . . . ,xn).

Note that the way we defined the likelihood function in terms of probability
density functions, it cannot take on negative values. Because the natural log is
a continuous, monotonically increasing function defined over positive values, we

41

CHAPTER 7. MAXIMUM LIKELIHOOD ESTIMATION (MLE)

can equivalently maximize over the natural log of the likelihood function. We
call this objective function the log likelihood and express it as

l(θ) := lnL(θ;x1, . . . ,xn) = ln

(
n∏
i=1

fXi
(xi|θ)

)
=

n∑
i=1

ln fXi
(xi|θ).

Now we can find the optimal parameter that solves the following problem:

θ̂ = arg max
θ

l(θ).

The log likelihood is generally convex, so we can often use the following opti-
mality condition to solve for the maximum likelihood estimate:

∇θl(θ)|θ=θ̂ = 0.

7.1.2 Bias of Estimators
Let θ be the true value of the parameter characterizing the underlying distri-
bution of our data. The maximum likelihood estimate is defined in terms of the
sample points, x1, . . . ,xn. Assume this estimate can be expressed as

θ̂ := g(x1, . . . ,xn).

Let Θ̂ be the random variable defined in terms of random variables as

Θ̂ := g(X1, . . . ,Xn).

The bias of the estimator is the expected difference of Θ̂ from the true value:

bias(θ̂) = E[Θ̂]− θ.

We say an estimator is unbiased if its bias is zero and biased if it is non-zero.

7.2 Isotropic Multivariate Gaussians
Often, we assume that our data comes from an isotropic Gaussian distribution
such that Xi ∼ N(µ, σ2Id), and we want to estimate the parameters µ and
σ2. Recall that an isotropic multivariate Gaussian random variable with d
dimensions and the parameters µ and σ2 has a PDF of the form

fXi
(xi) =

1(√
2πσ

)d exp

(
−||xi − µ||

2
2

2σ2

)
.

Machine Learning | S. Pohland

CHAPTER 7. MAXIMUM LIKELIHOOD ESTIMATION (MLE)

For a distribution of this form, we can express the log likelihood as

l(µ, σ2) =

n∑
i=1

ln fXi
(xi)

=

n∑
i=1

ln

(
1(√

2πσ
)d exp

(
−||xi − µ||

2
2

2σ2

))

=

n∑
i=1

(
−||xi − µ||

2
2

2σ2
− d ln

√
2π − d lnσ

)

7.2.1 Sample Mean
To derive the maximum likelihood estimate for the mean µ, we can first take
the gradient of the log likelihood with respect to µ, which gives us

∇µl(µ, σ2) = ∇µ

(
n∑
i=1

(
−||xi − µ||

2
2

2σ2
− d ln

√
2π − d lnσ

))

=

n∑
i=1

∇µ
(
−x

T
i xi
2σ2

+
xTi µ

σ2
− µ

Tµ

2σ2
− d ln

√
2π − d lnσ

)

=

n∑
i=1

(xi
σ2
− µ

σ2

)
Evaluating this expression at µ = µ̂ and setting it equal to zero, we get

n∑
i=1

(
xi
σ2
− µ̂

σ2

)
= 0 =⇒

n∑
i=1

(xi − µ̂) = 0 =⇒
n∑
i=1

xi − nµ̂ = 0

Solving for µ̂ in the equation above, we get the maximum likelihood estimate
for the mean, µ, which we also refer to as the sample mean:

µ̂ =
1

n

n∑
i=1

xi.

7.2.2 Sample Variance
To derive the maximum likelihood estimate for the variance, σ2, we can first
take the derivative of the log likelihood with respect to σ2, which gives us

∂

∂σ2
l(µ, σ2) =

∂

∂σ2

(
n∑
i=1

(
−||xi − µ||

2
2

2σ2
− d ln

√
2π − d lnσ

))

=

n∑
i=1

∂

∂σ2

(
−||xi − µ||

2
2

2σ2
− d ln

√
2π − d

2
lnσ2

)

=

n∑
i=1

(
||xi − µ||22

2(σ2)2
− d

2σ2

)

Machine Learning | S. Pohland

CHAPTER 7. MAXIMUM LIKELIHOOD ESTIMATION (MLE)

Evaluating this expression at σ2 = σ̂2 and setting it equal to zero, we get
n∑
i=1

(
||xi − µ||22

2(σ̂2)2
− d

2σ̂2

)
= 0 =⇒

n∑
i=1

(
||xi − µ||22

σ̂2
− d
)

= 0 =⇒

1

σ̂2

n∑
i=1

||xi − µ||22 − nd = 0

Solving for σ̂ in the equation above, we get the maximum likelihood estimate
for the variance, σ2, which we also refer to as the sample variance:

σ̂2 =
1

dn

n∑
i=1

||xi − µ||2.

Note that we do not actually know the true mean, µ, so we need to use the
sample mean µ̂ when computing the sample variance σ̂2, which we express as

σ̂2 =
1

dn

n∑
i=1

||xi − µ̂||2.

7.2.3 Bias of Estimators
Sample Mean

To compute the bias of the sample mean, we first must compute its expectation.

E[µ̂] = E

[
1

n

n∑
i=1

Xi

]
=

1

n
E

[
n∑
i=1

Xi

]
=

1

n

n∑
i=1

E [Xi] =
1

n

n∑
i=1

µ =
1

n
(nµ) = µ

Now we can see that the bias of the sample mean is given by

bias(µ̂) = E[µ̂]− µ = µ− µ = 0.

The bias is zero, so the sample mean is an unbiased estimator.

Sample Variance

To compute the bias of the sample variance, we must compute its expectation.

E[σ̂2] = E

[
1

dn

n∑
i=1

||Xi − µ̂||2
]

=
1

dn
E

[
n∑
i=1

||Xi − µ̂||2
]

=
1

dn
E

[
n∑
i=1

(
XT
i Xi − 2XT

i µ̂+ µ̂T µ̂
)]

=
1

dn
E

[
n∑
i=1

XT
i Xi − 2

n∑
i=1

XT
i µ̂+

n∑
i=1

µ̂T µ̂

]

=
1

dn
E

[
n∑
i=1

XT
i Xi − 2

n∑
i=1

XT
i µ̂+ nµ̂T µ̂

]

Machine Learning | S. Pohland

CHAPTER 7. MAXIMUM LIKELIHOOD ESTIMATION (MLE)

E[σ̂2] =
1

dn
E

[
n∑
i=1

XT
i Xi − 2

n∑
i=1

XT
i µ̂+ nµ̂T µ̂

]

=
1

dn
E

 n∑
i=1

XT
i Xi − 2

n∑
i=1

XT
i

 1

n

n∑
j=1

Xj

+ n

(
1

n

n∑
i=1

Xi

)T 1

n

n∑
j=1

Xj

=

1

dn
E

 n∑
i=1

XT
i Xi −

2

n

n∑
i=1

n∑
j=1

XT
i Xj +

1

n

n∑
i=1

n∑
j=1

XT
i Xj

=

1

dn
E

 n∑
i=1

XT
i Xi −

1

n

n∑
i=1

n∑
j=1

XT
i Xj

=

1

dn

n∑
i=1

E
[
XT
i Xi

]
− 1

dn2

n∑
i=1

n∑
j=1

E
[
XT
i Xj

]
=

1

dn

n∑
i=1

E
[
XT
i Xi

]
− 1

dn2

n∑
i=1

(
E
[
XT
i Xi

]
+
∑
j 6=i

E
[
XT
i Xj

])

For a random variableX with covariance matrix Σ and mean vector µ, we have
E
[
XTX

]
= tr(Σ) + µTµ. For two independent random variables X and Y

with corresponding means µX and µY , we have E
[
XTY

]
= µTXµY . Using

these property, the expectation of the sample variance is

E[σ̂2] =
1

dn

n∑
i=1

(
dσ2 + µTµ

)
− 1

dn2

n∑
i=1

((
dσ2 + µTµ

)
+
∑
j 6=i

µTµ

)

=
1

dn
n
(
dσ2 + µTµ

)
− 1

dn2
n
((
dσ2 + µTµ

)
+ (n− 1)µTµ

)
= σ2 +

µTµ

d
− σ2

n
− µ

Tµ

dn
− µ

Tµ

d
+
µTµ

dn

= σ2 − σ2

n
=
n− 1

n
σ2

Now we can see that the bias of the sample variance is given by

bias(σ̂2) = E[σ̂2]− σ2 =
n− 1

n
σ2 − σ2 = −σ

2

n
.

The bias of the sample variance is not equal to zero, so the sample variance of
an isotropic multivariate Gaussian is a biased estimator. If we want to use an
unbiased estimator for the variance, then we could use

σ̂2
unbiased =

n

n− 1
σ̂2 =

n

n− 1
· 1

dn

n∑
i=1

||xi − µ̂||2 =
1

d(n− 1)

n∑
i=1

||xi − µ̂||2

Machine Learning | S. Pohland

CHAPTER 7. MAXIMUM LIKELIHOOD ESTIMATION (MLE)

7.3 Anisotropic Multivariate Gaussians
We will also assume that our data comes from an anisotropic Gaussian dis-
tribution such that Xi ∼ N(µ,Σ), and we want to estimate the parameters
µ and Σ. Recall that an anisotropic multivariate Gaussian random variable
Xi ∼ N(µ,Σ) with dimension d has a PDF of the form

fXi
(xi) =

1

(2π)d/2|Σ|1/2
exp

(
−1

2
(xi − µ)TΣ−1(xi − µ)

)
.

For a distribution of this form, we can express the log likelihood as

l(µ,Σ) =

n∑
i=1

ln fXi
(xi)

=

n∑
i=1

ln

(
1

(2π)d/2|Σ|1/2
exp

(
−1

2
(xi − µ)TΣ−1(xi − µ)

))

=

n∑
i=1

(
−1

2
(xi − µ)TΣ−1(xi − µ)− d

2
ln(2π)− 1

2
ln |Σ|

)

7.3.1 Sample Mean
To derive the maximum likelihood estimate for the mean, µ, we can first take
the gradient of the log likelihood with respect to µ, which gives us

∇µl(µ,Σ) = ∇µ

(
n∑
i=1

(
−1

2
(xi − µ)TΣ−1(xi − µ)− d

2
ln(2π)− 1

2
ln |Σ|

))

=

n∑
i=1

∇µ
(
−1

2
xTi Σ−1xi + xTi Σ−1µ− 1

2
µTΣ−1µ− d

2
ln(2π)− 1

2
ln |Σ|

)

=

n∑
i=1

(
Σ−1xi −Σ−1µ

)
=

n∑
i=1

Σ−1(xi − µ)

Evaluating this expression at µ = µ̂ and setting it equal to zero, we get

n∑
i=1

Σ−1(xi − µ̂) = 0 =⇒
n∑
i=1

(xi − µ̂) = 0 =⇒
n∑
i=1

xi − nµ̂ = 0

Solving for µ̂ in the equation above, we get the maximum likelihood estimate
for the mean, µ, which we also refer to as the sample mean:

µ̂ =
1

n

n∑
i=1

xi.

Machine Learning | S. Pohland

CHAPTER 7. MAXIMUM LIKELIHOOD ESTIMATION (MLE)

7.3.2 Sample Covariance Matrix
To derive the maximum likelihood estimate for the covariance matrix, Σ, we
can first rewrite the the log likelihood with as

l(µ,Σ) =

n∑
i=1

(
−1

2
(xi − µ)TΣ−1(xi − µ)− d

2
ln(2π)− 1

2
ln |Σ|

)

= −1

2

n∑
i=1

tr
(
(xi − µ)TΣ−1(xi − µ)

)
− dn

2
ln(2π) +

n

2
ln |Σ−1|

= −1

2

n∑
i=1

tr
(
(xi − µ)T (xi − µ)Σ−1

)
− dn

2
ln(2π) +

n

2
ln |Σ−1|

Now computing the derivative of this expression with respect to Σ−1, we get

∂

∂Σ−1
l(µ,Σ) =

∂

∂Σ−1

[
−1

2

n∑
i=1

tr
(
(xi − µ)T (xi − µ)Σ−1

)
− dn

2
ln(2π) +

n

2
ln |Σ−1|

]

= −1

2

n∑
i=1

(
(xi − µ)(xi − µ)T

)T
+
n

2
ΣT

= −1

2

n∑
i=1

(xi − µ)(xi − µ)T +
n

2
Σ

Evaluating this expression at Σ = Σ̂ and setting it equal to zero, we get

−1

2

n∑
i=1

(xi − µ)(xi − µ)T +
n

2
Σ̂ = 0

This gives us the maximum likelihood estimate for the covariance matrix, Σ,
which we also refer to as the sample covariance matrix:

Σ̂ =
1

n

n∑
i=1

(xi − µ)(xi − µ)T .

Note that we do not actually know the true value of µ, so we need to use the
sample mean, µ̂, when computing the sample covariance matrix:

Σ̂ =
1

n

n∑
i=1

(xi − µ̂)(xi − µ̂)T .

7.3.3 Bias of Estimators
The sample mean for the anisotropic case is that same as for the isotropic
case. In the same way that we showed that the sample mean of an isotropic
multivariate Gaussian is an unbiased estimator, we can show that the sample
mean of an anisotropic multivariate Gaussian is an unbiased estimator.

Machine Learning | S. Pohland

CHAPTER 7. MAXIMUM LIKELIHOOD ESTIMATION (MLE)

In the isotropic case, we saw that the expected value of the sample variance is

E[σ̂2] =
n− 1

n
σ2.

We also noted that the sample variance of an isotropic multivariate Gaussian is
a biased estimator and an unbiased estimator for the variance is

σ̂2
unbiased =

n

n− 1
σ̂2.

In the anisotropic case, the expected value of the sample covariance matrix is

E[Σ̂] =
n− 1

n
Σ.

The sample covariance of an anisotropic multivariate Gaussian is a biased esti-
mator. If we want an unbiased estimator for the covariance, we could use

Σ̂unbiased =
n

n− 1
Σ̂ =

n

n− 1
· 1
n

n∑
i=1

(xi−µ̂)(xi−µ̂)T =
1

n− 1

n∑
i=1

(xi−µ̂)(xi−µ̂)T .

7.3.4 Invertibility of Sample Covariance
Note that because the sample covariance matrix, Σ̂, is the sum of square dyads
(xi − µ̂)(xi − µ̂)T divided by a positive constant, this estimator is guaranteed
to be symmetric and positive semidefinite. If we do not have d linearly indepen-
dent data samples, then the sample covariance matrix will be singular and not
positive definite. Note that this occurs whenever d > n, but it may occur when
d ≤ n as well. If we want a non-singular estimator for the covariance matrix,
we can instead use the matrix (Σ̂ + εId) as our estimate, where ε is positive
scalar value which can be made arbitrarily small. To determine an appropriate
value for ε, we should use hyperparameter tuning. If we do not want to use
this modified version of the sample covariance matrix, we can also work with a
singular covariance matrix by using its pseudoinverse instead of its inverse.

7.4 Discrete Random Variables
For continuous random variables, such as those described by multivariate Gaus-
sian distributions, we could derive maximum likelihood estimates by taking the
gradient of the log likelihood function and setting it equal to zero. For dis-
crete random variables, we cannot use calculus to find the maximum likelihood
estimates. Alternatively, we look at the likelihood ratio, which is defined as

R(θ|x) :=
L(θ;x)

L(θ − 1;x)
.

If R(θ|x) > 1, the likelihood, L(θ;x), increases as θ increases. Conversely, if
R(θ|x) < 1, the likelihood, L(θ;x), decreases as θ increases. Therefore, the
maximum likelihood estimator, θ̂, must satisfy R(θ̂|x) = 1. When solving this
equation, if we find that θ̂ is not an integer, then the greatest integer less than
the given solution is the true maximum likelihood estimate.

Machine Learning | S. Pohland

Chapter 8

Gaussian Discriminant
Analysis (GDA)

8.1 Overview of Gaussian Discriminant Analysis
As we did previously, consider a system of d-dimensional feature vectors and
corresponding labels. Let X be a random feature vector with a random label
Y . Assume that the range of X is X , which is some subset of Rd. In addition,
assume that the range of Y is C, which is a discrete set of possible classes.

Suppose that we want to determine to which class a given test point, x, belongs
using Bayes decision rule. Recall that, for a continuous feature space, if we
assume a symmetric loss function, the Bayes optimal decision rule is

r∗(x) = arg max
c∈C

fX|Y (x|c)pY (c).

Recall that generative models assume a form of the likelihood distributions,
fX|Y (x|c), and prior probabilities, pY (c), for each class c ∈ C and use data to
fit the parameters of these probability models. They then use these estimates to
approximate Bayes decision rule. Gaussian discriminant analysis (GDA)
is a generative model, in which the likelihood distributions are assumed to be
Gaussian and the prior probabilities are assumed to be categorical.

8.2 Quadratic Discriminant Analysis (QDA)
We consider two classes of Gaussian discriminant analysis (GDA): quadratic
discriminant analysis (QDA) and linear discriminant analysis (LDA).
In QDA, the objective of the decision function is quadratic, while in LDA, the
objective is linear. LDA is simply a variant of QDA, so we first discuss QDA.

49

CHAPTER 8. GAUSSIAN DISCRIMINANT ANALYSIS (GDA)

8.2.1 Isotropic Multivariate Gaussians
Recall that GDA is a generative model, in which the likelihood distributions are
assumed to be Gaussian and the prior probabilities are assumed to be categori-
cal. For now, assume that the likelihood distribution, fX|Y (x|c), is an isotropic
multivariate Gaussian distribution and is unique for each class c.

Known Distributions

Suppose we know the actual likelihood distribution fc(x) := fX|Y (x|c) and
prior probability πc := pY (c) for each class c. We should classify x such that

r(x) = arg max
c∈C

fc(x)πc.

If the sample points in each class c are drawn from an isotropic multivariate
Gaussian distribution with mean µc and covariance matrix σ2

cId, then

fc(x) =
1(√

2πσc
)d exp

(
−||x− µc||

2
2

2σ2
c

)
.

For this likelihood distribution, our classifier can be expressed as

r(x) = arg max
c∈C

1(√
2πσc

)d exp

(
−||x− µc||

2
2

2σ2
c

)
πc.

Removing the constant term that does not depend on c, this problem becomes

r(x) = arg max
c∈C

1

σdc
exp

(
−||x− µc||

2
2

2σ2
c

)
πc.

Because the natural log is monotonically increasing, we can equivalently choose

r(x) = arg max
c∈C

ln

(
1

σdc
exp

(
−||x− µc||

2
2

2σ2
c

)
πc

)
= arg max

c∈C

(
−||x− µc||

2
2

2σ2
c

− d lnσc + lnπc

)
.

Notice that the objective function of this problem is quadratic in x as desired.

Unknown Distributions

If we do not know the actual likelihood distribution, fc(x), and the actual prior
probability distribution, πc, for each class c, then we can use the maximum
likelihood estimations (see section 7.2). Suppose we have a data set containing
n sample points, x1, . . . ,xn, with corresponding labels, y1, . . . , yn. If nc is
the number of sample points in class c, the estimated conditional mean, µ̂c,
conditional variance, σ̂2

c , and prior probability, π̂c, for class c are

µ̂c =
1

nc

∑
i:yi=c

xi, σ̂2
c =

1

dnc

∑
i:yi=c

||xi − µ̂c||2, and π̂c =
nc
n
.

Machine Learning | S. Pohland

CHAPTER 8. GAUSSIAN DISCRIMINANT ANALYSIS (GDA)

The decision function for QDA with isotropic multivariate Gaussians is then

r(x) = arg max
c∈C

(
−||x− µ̂c||

2
2

2σ̂2
c

− d ln σ̂c + ln π̂c

)
.

8.2.2 Anisotropic Multivariate Gaussians
Once again, we assume Gaussian likelihood distributions and categorical prior
probabilities. We now assume that the likelihood distribution, fX|Y (x|c), is an
anisotropic multivariate Gaussian distribution and is unique for each class c.

Known Distributions

Assume we know the actual likelihood distribution fc(x) := fX|Y (x|c) and prior
probability πc := pY (c) for each class c. We should classify x such that

r(x) = arg max
c∈C

fc(x)πc.

If the sample points in each class c are drawn from an anisotropic multivariate
Gaussian distribution with mean µc and covariance matrix Σc, then

fc(x) =
1

(2π)d/2|Σc|1/2
exp

(
−1

2
(x− µc)TΣ−1c (x− µc)

)
.

For this likelihood distribution, the Bayes decision rule can be expressed as

r(x) = arg max
c∈C

1

(2π)d/2|Σc|1/2
exp

(
−1

2
(x− µc)TΣ−1c (x− µc)

)
πc.

Removing the constant term that does not depend on c, this problem becomes

r(x) = arg max
c∈C

1

|Σc|1/2
exp

(
−1

2
(x− µc)TΣ−1c (x− µc)

)
πc.

Because the natural log is monotonically increasing, we can equivalently choose

r(x) = arg max
c∈C

ln

(
1

|Σc|1/2
exp

(
−1

2
(x− µc)TΣ−1c (x− µc)

)
πc

)
= arg max

c∈C

(
−1

2
(x− µc)TΣ−1c (x− µc)−

1

2
ln |Σc|+ lnπc

)
.

Notice that the objective function of this problem is quadratic in x as desired.

Unknown Distributions

If we do not know the actual likelihood distribution, fc(x), and the actual prior
probability distribution, πc, for each class c, then we can use the maximum
likelihood estimations (see section 7.3). Suppose we have a data set containing

Machine Learning | S. Pohland

CHAPTER 8. GAUSSIAN DISCRIMINANT ANALYSIS (GDA)

n sample points, x1, . . . ,xn, with corresponding labels, y1, . . . , yn. If nc is
the number of sample points in class c, the estimated conditional mean, µ̂c,
conditional covariance, Σ̂c, and prior probability, π̂c, for class c are

µ̂c =
1

nc

∑
i:yi=c

xi, Σ̂c =
1

nc

∑
i:yi=c

(xi − µ̂c)(xi − µ̂c)T , and π̂c =
nc
n
.

The decision function for QDA with anisotropic multivariate Gaussians is then

r(x) = arg max
c∈C

(
−1

2
(x− µ̂c)T Σ̂−1c (x− µ̂c)−

1

2
ln |Σ̂c|+ ln π̂c

)
.

As discussed in section 7.3.4, the sample covariance, Σ̂c, is always positive
semidefinite, but it is not always positive definite and thus may not be invertible.
There are multiple ways to deal with this issue, as discussed previously.

8.3 Linear Discriminant Analysis
Linear discriminant analysis (LDA) is the second category of Gaussian discrimi-
nant analysis (GDA) and is a variant of quadratic discriminant analysis (QDA).
Previously, we assumed that the likelihood distribution, fX|Y (x|c), is a mul-
tivariate Gaussian distribution and is unique for each class c. The difference
between LDA and QDA is that in LDA, we have an additional assumption that
all of the Gaussian likelihood distributions have the same covariance matrix.

8.3.1 Isotropic Multivariate Gaussians
As in QDA, we assume that the likelihood distributions are Gaussian and that
the prior probabilities are categorical. Let us first assume that the likelihood
distribution, fX|Y (x|c), is an isotropic multivariate Gaussian distribution.

Known Distributions

In QDA, we found that if the sample points in each class c are drawn from
an isotropic multivariate Gaussian distribution with mean µc and covariance
matrix σ2

cId, then we can express the decision function as

r(x) = arg max
c∈C

(
−||x− µc||

2
2

2σ2
c

− d lnσc + lnπc

)
.

In LDA, we assume all the likelihood distributions have the same covariance, so
σ2
c = σ2 for all c. This condition allows us to express the decision function as

r(x) = arg max
c∈C

(
−||x− µc||

2
2

2σ2
− d lnσ + lnπc

)
.

Machine Learning | S. Pohland

CHAPTER 8. GAUSSIAN DISCRIMINANT ANALYSIS (GDA)

By removing terms that do not depend on c, we equivalently express this as

r(x) = arg max
c∈C

(
−||x− µc||

2
2

2σ2
+ lnπc

)
= arg max

c∈C

(
−x

Tx− 2µTc x+ µTc µc
2σ2

+ lnπc

)
= arg max

c∈C

(
µTc x

σ2
− ||µc||

2
2

2σ2
+ lnπc

)
.

Notice that the objective function of this problem is linear in x as desired.

Unknown Distributions

If we do not know the actual likelihood distribution, fc(x), and the actual prior
probability distribution, πc, for each class c, then we can use the maximum
likelihood estimations (see section 7.2). Suppose we have a data set containing
n sample points, x1, . . . ,xn, with corresponding labels, y1, . . . , yn. If nc is
the number of sample points in class c, the estimated conditional mean, µ̂c,
conditional variance, σ̂2, and prior probability, π̂c, for class c are

µ̂c =
1

nc

∑
i:yi=c

xi, σ̂2 =
1

dn

∑
c

∑
i:yi=c

||xi − µ̂c||2, and π̂c =
nc
n
.

The decision function for LDA with isotropic multivariate Gaussians is then

r(x) = arg max
c∈C

(
µ̂Tc x

σ̂2
− ||µ̂c||

2
2

2σ̂2
+ ln π̂c

)
.

8.3.2 Anisotropic Multivariate Gaussians
Once again, we assume Gaussian likelihood distributions and categorical prior
probabilities. We will now also assume that the likelihood distribution, fX|Y (x|c),
is an anisotropic multivariate Gaussian distribution for each class c.

Known Distributions

In QDA, we found that if the sample points in each class c are drawn from
an anisotropic multivariate Gaussian distribution with mean µc and covariance
matrix Σc, then we can express the decision function as

r(x) = arg max
c∈C

(
−1

2
(x− µc)TΣ−1c (x− µc)−

1

2
ln |Σc|+ lnπc

)
.

In LDA, we assume all the likelihood distributions have the same covariance, so
Σc = Σ for all c. This condition allows us to express the decision function as

r(x) = arg max
c∈C

(
−1

2
(x− µc)TΣ−1(x− µc)−

1

2
ln |Σ|+ lnπc

)
.

Machine Learning | S. Pohland

CHAPTER 8. GAUSSIAN DISCRIMINANT ANALYSIS (GDA)

By removing terms that do not depend on c, we equivalently express this as

r(x) = arg max
c∈C

(
−1

2
(x− µc)TΣ−1(x− µc) + lnπc

)
= arg max

c∈C

(
−1

2
xTΣ−1x+ µTcΣ−1x− 1

2
µTcΣ−1µc + lnπc

)
= arg max

c∈C

(
µTcΣ−1x− 1

2
µTcΣ−1µc + lnπc

)
.

Notice that the objective function of this problem is linear in x as desired.

Unknown Distributions

If we do not know the actual likelihood distribution, fc(x), and the actual prior
probability distribution, πc, for each class c, then we can use the maximum
likelihood estimations (see section 7.3). Suppose we have a data set containing
n sample points, x1, . . . ,xn, with corresponding labels, y1, . . . , yn. If nc is the
number of sample points in class c, the estimated conditional mean, µ̂c, pooled
within-class covariance matrix Σ̂, and prior probability, π̂c, for class c are

µ̂c =
1

nc

∑
i:yi=c

xi, Σ̂ =
1

n

∑
c

∑
i:yi=c

(xi − µ̂c)(xi − µ̂c)T , and π̂c =
nc
n
.

The decision function for LDA with anisotropic multivariate Gaussians is then

r(x) = arg max
c∈C

(
µ̂Tc Σ̂−1x− 1

2
µ̂Tc Σ̂−1µ̂c + ln π̂c

)
.

As discussed in section 7.3.4, the sample covariance, Σ̂, is always positive
semidefinite, but it is not always positive definite and thus may not be invertible.
There are multiple ways to deal with this issue, as discussed previously.

8.4 Comparison of LDA & QDA
LDA and QDA are similar classification methods with important distinctions:

1. Both LDA and QDA perform well when data can only support simple
decision boundaries because Gaussian models provide stable estimates.
For some data sets, QDA works better, and for some, LDA works better.
We can use validation to choose which type of classifier to use.

2. For a data set with only two classes, LDA has d + 1 parameters, while
QDA has 1

2d(d+ 3) + 1 parameters. Because QDA has more parameters,
QDA is more likely to overfit and LDA is more likely to underfit.

Machine Learning | S. Pohland

CHAPTER 8. GAUSSIAN DISCRIMINANT ANALYSIS (GDA)

3. In general, LDA provides linear decision boundaries, while QDA provides
quadratic decision boundaries. However, with added features, LDA can
give nonlinear boundaries and QDA can give non-quadratic boundaries.
Examples of the types of decision boundaries that can be obtained by
LDA and QDA with different features are shown in figure 8.1.

Figure 8.1: On the left, LDA was used to produce linear decision
boundaries. In the center, QDA was used to produce quadratic
decision boundaries. On the right, QDA with additional features
was used to produce non-quadratic decision boundaries.

Machine Learning | S. Pohland

Chapter 9

Regression

9.1 Overview of Regression
Recall from section 2.1.1 that, within supervised learning, there are two types
of machine learning problems: classification and regression. Up until now, we
assumed that our data had categorical labels, and we performed classification
to predict the class of unseen data. Now we will assume that our data has
quantitative labels and will use regression to predict the numerical value asso-
ciated with unseen data. We will generally assume that we are working with n
samples points x1, . . . ,xn with corresponding labels y1, . . . , yn, where xi ∈ Rd
and yi ∈ R. There are three main components of any regression problem:

1. Regression function

For a data point x and parameters p, the regression function has the form
h(x;p). The function h is also commonly referred to as the hypothesis.
The parameter vector p ∈ Rd+1 is often expressed as a weight vector,
w ∈ Rd, plus a bias term, α ∈ R. Some common regression functions are:

(a) Linear – h(x;w, α) = wTx+ α

(b) Polynomial – h(x;w, α) = p(x), where p : Rd → R is a polynomial

(c) Logistic – h(x;w, α) = s(wTx + α), where s : R → [0, 1] is the
logistic function defined such that s(γ) = 1/(1 + e−γ)

2. Loss function

For a data point x with the true label y, we use the regression function
to make a prediction z = h(x;p). We express the loss function for a
prediction z and true label y as L(z, y). Some common loss functions are:

(a) Squared error – L(z, y) = (z − y)2

(b) Absolute error – L(z, y) = |z − y|

56

CHAPTER 9. REGRESSION

(c) Logistic loss/cross-entropy – L(z, y) = −y ln(z)−(1−y) ln(1−z),
where the labels and predictions must satisfy y ∈ [0, 1] and z ∈ (0, 1)

3. Cost function

The loss function, L(z, y), is defined for a single data point x with true la-
bel y. We define the cost function, J(h), for a set of data points x1, . . . ,xn,
with corresponding labels y1, . . . , yn. Some common cost functions are:

(a) Mean loss – J(h) = 1
n

∑n
i=1 L

(
h(xi), yi)

(b) Max loss – J(h) = maxi∈{1,...,n} L
(
h(xi), yi)

(c) Weighted sum – J(h) =
∑n
i=1 ωiL

(
h(xi), yi), where ω1, . . . , ωn are

weight terms that we select based on how much we want to penalize
the loss for different data points

9.2 Linear Least Squares Regression
Linear least squares regression uses the linear regression function, squared
error loss function, and mean loss cost function. Combining all these compo-
nents, linear least squares regression is defined by the following problem:

min
w∈Rd,α∈R

1

n

n∑
i=1

(
wTxi + α− yi

)2
.

We can remove the constant factor and equivalently express this problem as

min
w∈Rd,α∈R

n∑
i=1

(
wTxi + α− yi

)2
.

Recall from our discussion of the perceptron algorithm with bias in section 3.3.2
that we can express the linear function h(x) = wTx+α as h(x̃) = w̃T x̃, where
x̃ is the vector x augmented with one and w̃ is the vector w augmented with
α. Therefore, we can equivalently express the linear least squares problem as

min
w̃∈Rd+1

n∑
i=1

(
w̃T x̃i − yi

)2
.

Let X be the n× (d+ 1) design matrix whose ith row is the transpose of the
ith sample point, xi ∈ Rd, augmented with one. Let y be an n-dimensional
vector whose ith element, yi, is the label corresponding to sample point xi.
Finally, let w ∈ Rd+1 now be the previous weight vector augmented with the
bias term, α. This allows us to express the linear least squares problem as

min
w∈Rd+1

||Xw − y||22.

Machine Learning | S. Pohland

CHAPTER 9. REGRESSION

9.2.1 Optimal Solution
Because the objective is a convex quadratic function, we can find the optimal
solution, ŵ, by computing the gradient of the objective function with respect
to w and setting it equal to zero. The gradient of the objective function is

∇wJ(w) = ∇w||Xw − y||22
= ∇w

((
Xw − y

)T (
Xw − y

))
= ∇w

(
wTXTXw − 2yTXw + yTy

)
= 2XTXw − 2XTy.

Evaluating the gradient at w = ŵ and setting it equal to zero, we have

2XTXŵ − 2XTy = 0

XTXŵ = XTy

By definition of the range space, the vector XTy is in the range of XT . By
the fundamental theorem of linear algebra, the range of XT is the same as the
range of XTX. Therefore, the vector XTy is in the range of XTX. This tells
us that the equation XTXŵ = XTy always has at least one solution. If the
data samples span the feature space, Rd, then the rank ofX is d+1. Under this
condition, the (d+ 1)× (d+ 1) matrix XTX has rank d+ 1, so it is invertible
and the unique solution of the linear least squares equation is given by

ŵ = (XTX)−1XTy.

If the data samples do not span all of the feature space, then the rank of X
is less than d + 1. Under this condition, XTX also has rank less than d + 1,
so it is singular. The problem is underconstrained and the linear equation
XTXŵ = XTy has infinitely many solutions. The minimum norm solution is

ŵ = X†y,

where X† is the pseudoinverse of the design matrix, X. For more information
on the solution to the linear equation, please see my linear algebra notes. Given
the optimal weight vector, ŵ, the predicted label of the augmented sample point
x̃i is given by ŷi = ŵT x̃i. We can combine all these predictions into the vector

ŷ = Xŵ = XX†y =: Hy.

We often refer to the n× n matrix H := XX† as the hat matrix.

9.2.2 Advantages & Disadvantages
Linear least squares regression is useful because the decision function is easily
computed by solving a linear equation. Another benefit of linear least squares
regression is that when XTX is invertible, we find a unique stable solution.
However, linear least squares regression gives multiple solutions if the matrix
XTX is singular. It also does not perform well when the data is very noisy be-
cause errors are squared, making the decision function very sensitive to outliers.

Machine Learning | S. Pohland

CHAPTER 9. REGRESSION

9.2.3 Bias-Variance Decomposition
Assume that the sample points come from an unknown probability distribution
D and that the labels are the sum of an unknown deterministic function of the
samples, g(xi), and random noise, εi, which comes from some other unknown
probability distribution D′. We can express this assumption mathematically as

yi = g(xi) + εi, xi ∼ D, εi ∼ D′.

Recall that the goal of regression problems is to find a hypothesis h that esti-
mates the unknown function g. We want to analyze the risk associated with
this hypothesis. Consider an arbitrary test point z ∈ Rd in the feature space
with the label γ = g(z) + ε, where ε ∼ D′. In general, for some arbitrary loss
function L, the risk associated with the hypothesis function is given by

R(h) = E [L(h(z), γ)] .

When performing linear least squares regression, we use the squared error loss
function, which gives us the following risk function:

R(h) = E
[(
h(z)− γ

)2]
= E

[
h(z)2 + γ2 − 2γh(z)

]
= E

[
h(z)2

]
+ E

[
γ2
]
− 2E [γh(z)] .

Because the hypothesis, h(z), depends only on the training data, x1 . . . ,xn,
and the label, γ, depends only on the test point, z, these two random variables
are independent. As a result, the risk can be expressed as

R(h) = E
[
h(z)2

]
+ E

[
γ2
]
− 2E [γ]E [h(z)]

= Var(h(z)) + E [h(z)]
2

+ Var(γ) + E [γ]
2 − 2E [γ]E [h(z)]

=
(
E [h(z)]− E [γ]

)2
+ Var(h(z)) + Var(γ).

Recall that γ = g(z)+ε. Because g is a deterministic function, Var(γ) = Var(ε).
If we assume that ε has zero mean, then E [γ] = g(z). Under these conditions,

R(h) =
(
E [h(z)]− g(z)

)2
+ Var(h(z)) + Var(ε).

This is the bias-variance decomposition of the risk function for linear least
squares regression. The first term is the squared bias of the regression method,
which can be interpreted as the expected difference between the hypothesis,
h(z), and the true label, γ, for the given test point, z. The second term is the
variance of the regression method, which can be interpreted as the expected
deviation of the hypothesis, h(z), from its average, E[h(z)]. The third term
is the irreducible error, which only depends on random noise. This error is
called irreducible because it is not impacted by the hypothesis.

Machine Learning | S. Pohland

CHAPTER 9. REGRESSION

9.3 Polynomial Least Squares Regression
Polynomial least squares regression uses the polynomial regression func-
tion, squared error loss function, and mean loss cost function. We can obtain
a polynomial least squares regression problem by modifying the linear least
squares regression problem. One way to do so is to replace each data sam-
ple, xi, with the polynomial feature vector φ(xi) before performing linear least
squares regression. For example, if we have d = 2 two features and want to use
a polynomial of degree p = 2, then our feature vector φ(xi) would be

φ(xi) =
[
x2i1 x2i2 xi1xi2 xi1 xi2 1

]T
By using polynomial least squares regression, rather than linear least squares
regression, we are able to obtain nonlinear decision boundaries. Note that for
lower degrees of p, we are more likely to have high levels of bias and may underfit
our data. Conversely, for higher degrees of p, we are more likely to have high
levels of variance and may overfit our data. Generally, as the degree of our
polynomial increases, the validation/test error will decrease at first, due to a
decrease in bias. As we continue to increase the degree, the error will start to
increase, due to an increase in variance. This is an example of bias-variance
trade-off. We should tune the hyperparameter p to determine the value that
gives us the lowest validation/test error. The impact of different degrees on the
polynomial least squares regression solution is demonstrated in figure 9.1.

Figure 9.1: Suppose we want to use polynomial least squares
regression to fit a model that relates price to house size. In
this example, the degree one polynomial results in high bias
and underfitting, while the degree six polynomial results in high
variance and overfitting. The degree two polynomial gives us a
significantly better model for the given data.

9.4 Weighted Least Squares Regression
Weighted least squares regression uses the linear regression function, squared
error loss function, and weighted sum cost function. Combining all of these com-

Machine Learning | S. Pohland

CHAPTER 9. REGRESSION

ponents, weighted least squares regression is defined by the following problem:

min
w∈Rd,α∈R

n∑
i=1

ωi
(
wTxi + α− yi

)2
.

As with linear least squares regression, let x̃i be the sample point xi augmented
with one. Again, we will redefine w ∈ Rd+1 as the previous weight vector
augmented with the bias term, α. Now we can express this problem as

min
w∈Rd+1

n∑
i=1

ωi
(
wT x̃i − yi

)2
.

Now let X be the n × (d + 1) matrix whose ith row is the transpose of the
ith augmented sample point, x̃i ∈ Rd+1. Let y be the n-dimensional vector
whose ith element, yi, is the label corresponding to sample point xi. We will
also define the weight matrix Ω as an n×n diagonal matrix whose ith diagonal
entry is the weight ωi. Now we can express this problem in as

min
w∈Rd+1

(Xw − y)TΩ(Xw − y).

9.4.1 Optimal Solution
Because the objective is a convex quadratic function, we can find the optimal
solution, ŵ, by computing the gradient of the objective function with respect
to w and setting it equal to zero. The gradient of the objective function is

∇wJ(w) = ∇w
(

(Xw − y)TΩ(Xw − y)
)

= ∇w
(
wTXTΩXw − 2yTΩXw + yTΩy

)
= 2XTΩXw − 2XTΩy.

Evaluating the gradient at w = ŵ and setting it equal to zero, we have

2XTΩXŵ − 2XTΩy = 0

XTΩXŵ = XTΩy

If XTΩX is invertible, then the unique solution is given by

ŵ = (XTΩX)−1XTΩy.

If this matrix is not invertible, the minimum norm solution is

ŵ = (XTΩX)†XTΩy.

9.4.2 Advantages & Disadvantages
Weighted least squares regression is useful because it allows us to give greater
weight to data we believe is more reliable and lower weight to data that may be
noisy or prone to errors when estimating the numerical labels of unseen data.

Machine Learning | S. Pohland

CHAPTER 9. REGRESSION

9.5 Logistic Regression
Logistic regression uses the logistic regression function, logistic loss func-
tion, and mean loss cost function. Combining all of these components, logistic
regression is defined by the following optimization problem:

min
w∈Rd,α∈R

1

n

n∑
i=1

(
−yi ln

(
s(wTxi + α)

)
− (1− yi) ln

(
1− s(wTxi + α)

))
.

We can remove the constant factor and equivalently express this problem as

min
w∈Rd,α∈R

−
n∑
i=1

(
yi ln

(
s(wTxi + α)

)
+ (1− yi) ln

(
1− s(wTxi + α)

))
.

As with linear least squares regression, let x̃i be the sample point xi augmented
with one, and letX be the n×(d+1) matrix whose ith row is the transpose of the
ith augmented sample point, x̃i ∈ Rd+1. Again, define y as the n-dimensional
vector whose ith element, yi, is the label corresponding to sample point xi.
Finally, we will redefine w ∈ Rd+1 as the previous weight vector augmented
with the bias term, α. Now we can express this optimization problem as

min
w∈Rd+1

−
n∑
i=1

(
yi ln

(
s(wT x̃i)

)
+ (1− yi) ln

(
1− s(wT x̃i)

))
.

9.5.1 Optimal Solution
The objective for the logistic regression problem is convex, but this problem
does not have a closed-form solution. Therefore, we cannot find the optimal
solution, ŵ, using the optimality condition. Instead, we can find the solution
using batch gradient descent, stochastic gradient descent, or Newton’s method.

Batch Gradient Descent

I will first discuss how to find the solution to the logistic regression optimization
problem using batch gradient descent. Recall that in batch gradient descent,
we find the optimal solution by applying the iterative update rule

wk+1 = wk − η∇wJ(w)
∣∣
w=wk

,

where η is a positive step size that determines the rate of convergence. To find
the update rule for batch gradient descent, we first need to compute the gradient

Machine Learning | S. Pohland

CHAPTER 9. REGRESSION

of the objective function with respect to w. Using the chain rule, we get

∇wJ(w) = −
n∑
i=1

∇w
(
yi ln

(
s(wT x̃i)

)
+ (1− yi) ln

(
1− s(wT x̃i)

))
= −

n∑
i=1

(
yi

1

s(wT x̃i)

d

dγ

[
s(γ)

]
γ=wT x̃i

x̃i

+ (1− yi)
−1

1− s(wT x̃i)

d

dγ

[
s(γ)

]
γ=wT x̃i

x̃i

)
.

Notice that the derivative of the logistic function can be expressed as

d

dγ
s(γ) =

d

dγ

(
1

1 + e−γ

)
=

e−γ(
1 + e−γ

)2 = s(γ)
(
1− s(γ)

)
.

This allows us to express the gradient of the logistic regression objective as

∇wJ(w) = −
n∑
i=1

(
yi

1

s(wT x̃i)
s(wT x̃i)

(
1− s(wT x̃i)

)
x̃i

+ (1− yi)
−1

1− s(wT x̃i)
s(wT x̃i)

(
1− s(wT x̃i)

)
x̃i

)

= −
n∑
i=1

(
yi
(
1− s(wT x̃i)

)
x̃i − (1− yi)s(wT x̃i)x̃i

)
= −

n∑
i=1

(
yix̃i − s(wT x̃i)x̃i

)
=

n∑
i=1

(
s(wT x̃i)− yi

)
x̃i.

Now we can express the batch gradient descent update rule as

wk+1 = wk − η
n∑
i=1

(
s(wT

k x̃i)− yi
)
x̃i

= wk + η

n∑
i=1

(
yi − s(wT

k x̃i)
)
x̃i.

Note that if we define s(w) as the n-dimensional vector whose ith element is
si(w) := s(wT x̃i), we can equivalently express the gradient of the objective as

∇wJ(w) = XT
(
s(w)− y

)
.

This then allows us to express the batch gradient descent update rule as

wk+1 = wk − ηXT
(
s(wk)− y

)
= wk + ηXT

(
y − s(wk)

)
.

Machine Learning | S. Pohland

CHAPTER 9. REGRESSION

Stochastic Gradient Descent

Notice that for batch gradient descent, we updated the weight vector using all
of the data samples at each iteration. Sometimes it is better to update the
weight vector using just one sample at each iteration. This method of gradient
descent is called stochastic gradient descent. Rather than updating wk based
on the entire gradient at each iteration, we could simply use the portion of the
gradient contributed to by the ith data sample. We can express the stochastic
gradient descent update law for logistic regression as

wk+1 = wk − η
(
s(wT

k x̃i)− yi
)
x̃i

= wk + η
(
yi − s(wT

k x̃i)
)
x̃i.

Newton’s Method

We can also find the optimal solution, ŵ, using Newton’s method. In general,
the update law for Newton’s method is given by

wk+1 = wk − η
(
∇2
wJ(w)|w=wk

)−1
∇wJ(w)|w=wk

.

To determine the update rule for Newton’s method, we need to compute both
the gradient and Hessian of J(w). We previously showed that the gradient is

∇wJ(w) =

n∑
i=1

(
s(wT x̃i)− yi

)
x̃i.

Using the chain rule, the Hessian of the objective is given by

∇2
wJ(w) = ∇w

n∑
i=1

(
s(wT x̃i)− yi

)
x̃i

=

n∑
i=1

∇w
(
s(wT x̃i)x̃i

)
=

n∑
i=1

s(wT x̃i)
(
1− s(wT x̃i)

)
x̃ix̃

T
i .

Now we can express the Newton’s method update rule as

wk+1 = wk − η

(
n∑
i=1

s(wT x̃i)
(
1− s(wT x̃i)

)
x̃ix̃

T
i

)−1(n∑
i=1

(
s(wT

k x̃i)− yi
)
x̃i

)

= wk + η

(
n∑
i=1

s(wT x̃i)
(
1− s(wT x̃i)

)
x̃ix̃

T
i

)−1(n∑
i=1

(
yi − s(wT

k x̃i)
)
x̃i

)
.

Note that if S(w) is the n × n diagonal matrix whose ith diagonal element is
Sii(w) := s(wT x̃i), we can equivalently express the Hessian of the objective as

∇2
wJ(w) = XTS(w)

(
In − S(w)

)
X.

Machine Learning | S. Pohland

CHAPTER 9. REGRESSION

This then allows us to express the Newton’s method update rule as

wk+1 = wk − η
(
XTS(wk)

(
In − S(wk)

)
X
)−1

XT
(
s(wk)− y

)
= wk + η

(
XTS(wk)

(
In − S(wk)

)
X
)−1

XT
(
y − s(wk)

)
.

9.5.2 Advantages & Disadvantages
Logistic regression can be used to fit probability models because it produces pre-
dictions in the range (0, 1) and is often used for binary classification with labels
0 and 1. Logistic regression is an example of a discriminative model, which di-
rectly models the posterior probability of each class as a logistic function. Recall
that LDA (section 8.3) is an example of a generative model, which indirectly
models the posterior probability of each class as a logistic function. Logistic
regression and LDA are similar methods of finding linear decision boundaries,
but there are advantages and disadvantages of both classification methods:

1. For well-separated data, LDA is a stable classification method, while lo-
gistic regression is unstable. This means that changing one sample point
will not greatly change the decision boundary in LDA, but it may greatly
change the decision boundary in logistic regression.

2. LDA handles multi-class problems easily, while logistic regression needs
to be modified to handle problems with more than two classes.

3. LDA is slightly more accurate when class distributions are nearly normal,
but logistic regression is more robust on some non-Gaussian distributions,
such as distributions with large skew.

4. Logistic regression places more of an emphasis on the decision boundary,
so it always separates linearly separable points.

Machine Learning | S. Pohland

Chapter 10

Regularization

10.1 Overview of Regularization
We can use regularization to improve the performance of a regression model. For
any regression problem, there are two types of regularization: l2 and l1. Regu-
larization can be used with any regression problem defined by any combination
of regression, loss, and cost function, but we will focus on its application to lin-
ear least squares regression. When we use l2 regularization with the linear least
squares regression problem, we refer to the new problem as ridge regression
or Tikohonov regularization. When we use l1 regularization with the linear
least squares regression problem, we refer to the new problem as LASSO. We
will go into detail about ridge regression and LASSO in the following sections.
Again, we will assume that we are working with n samples points x1, . . . ,xn
with corresponding labels y1, . . . , yn, where xi ∈ Rd and yi ∈ R.

10.2 Ridge Regression (Tikohonov Regularization)
Ridge regression, which is also referred to as Tikohonov regularization,
adds an l2 regularization term to the ordinary linear least squares regression
problem, resulting in the following optimization problem:

min
w∈Rd,α∈R

1

n

n∑
i=1

(
wTxi + α− yi

)2
+ λ||w||22.

In the optimization problem above, λ is a regularization term. For larger values
of λ, we more strongly encourage weights to be closer to zero. We can remove
the constant factor and equivalently express this problem as

min
w∈Rd,α∈R

n∑
i=1

(
wTxi + α− yi

)2
+ λ||w||22.

66

CHAPTER 10. REGULARIZATION

Let x̃i be the sample point xi augmented with one, and redefine w ∈ Rd+1 as
the previous weight vector augmented with the bias term, α. We will now use
w′ ∈ Rd to denote the original weight vector without the bias term. With these
definitions, we can now express the ridge regression problem as

min
w∈Rd+1

n∑
i=1

(
wT x̃i − yi

)2
+ λ||w′||22.

Now let X be the n × (d + 1) matrix whose ith row is the transpose of the
ith augmented sample point, x̃i ∈ Rd+1, and let y be the n-dimensional vector
whose ith element, yi, is the label corresponding to sample point xi. Now we
can express the ridge regression problem as

min
w∈Rd+1

||Xw − y||22 + λ||w′||22.

10.2.1 Optimal Solution
Because the objective is a convex quadratic function, we can find the optimal
solution, ŵ, by computing the gradient of the objective function with respect
to w and setting it equal to zero. The gradient of the objective function is

∇wJ(w) = ∇w
(
||Xw − y||22 + λ||w′||22

)
= ∇w

(
wTXTXw − 2yTXw + yTy + λw′Tw′

)
= 2XTXw − 2XTy + 2λI′d+1w.

Note that I am defining I′d+1 as the (d + 1) × (d + 1) identity matrix whose
bottom right element has been set to zero. Evaluating the gradient at w = ŵ
and setting the expression equal to zero, we get

2XTXŵ − 2XTy + 2λI′d+1ŵ = 0(
XTX + λI′d+1

)
ŵ = XTy

Recall that the solution for linear least square regression was the solution to
the linear equation XTXŵ = yTX, which only has a unique solution when
XTX is nonsingular. The matrix XTX + λI′d+1 is always nonsingular, so
ridge regression always admits the unique solution

ŵ =
(
XTX + λI′d+1

)−1
XTy.

10.2.2 Variation of Ridge Regression
One variation of ridge regression is to instead minimize the cost function

J(w) = ||Xw − y||22 + λwTDw,

Machine Learning | S. Pohland

CHAPTER 10. REGULARIZATION

where D is a diagonal matrix whose last diagonal element is zero. We can use
the matrix D to more heavily penalize weights associated with features that we
believe are less accurate and more prone to errors. Rather than penalizing all
of the weights with the value λ, we can penalize each component of the weight,
wi, with the value λDii. For higher values of Dii, we are forcing the size of the
ith component of w closer to zero. Note that we enforce that the last diagonal
element of D is zero because we do not want to penalize the bias term α.

10.3 LASSO
LASSO, which stands for "Least Absolute Shrinkage and Selection Operator",
adds an l1 regularization term to the ordinary linear least squares regression
problem, resulting in the following optimization problem:

min
w∈Rd,α∈R

1

n

n∑
i=1

(
wTxi + α− yi

)2
+ λ||w||1.

We can remove the constant factor and equivalently express this problem as

min
w∈Rd,α∈R

n∑
i=1

(
wTxi + α− yi

)2
+ λ||w||1.

Let x̃i be the sample point xi augmented with one, and redefine w ∈ Rd+1 as
the previous weight vector augmented with the bias term, α. We will now use
w′ ∈ Rd to denote the original weight vector without the bias term. With these
definitions, we can now express the LASSO problem as

min
w∈Rd+1

n∑
i=1

(
wT x̃i − yi

)2
+ λ||w′||1.

Now let X be the n × (d + 1) matrix whose ith row is the transpose of the
ith augmented sample point, x̃i ∈ Rd+1, and let y be the n-dimensional vector
whose ith element, yi, is the label corresponding to sample point xi. Now we
can express the LASSO problem as

min
w∈Rd+1

||Xw − y||22 + λ||w′||1.

Unlike ridge regression, LASSO does not admit a closed-form solution.

10.4 Bias-Variance Trade-Off
In practice, regularization often improves the performance of regression models.
This improvement can partially be explained by the bias-variance trade-off.
By adding a regularization/penalty term to the ordinary linear least squares
problem, we encourage weights to be closer to zero. This changes both the bias

Machine Learning | S. Pohland

CHAPTER 10. REGULARIZATION

and the variance associated with the original regression problem. As we increase
the size of the regularization parameter, λ, we penalize large weights more, which
gives us smaller weights. For large weights, a small change in a sample point,
xi, results in a large change in the label, yi, which creates a lot of variance.
Therefore, by increasing the size of the regularization parameter, λ, we reduce
the variance. In fact, as λ approaches infinity, the variance in ridge regression
and LASSO approaches zero. However, as we increase λ and encourage smaller
weights, we may lose information in our model, which increases the bias. The
effect of the regularization parameter is depicted in figure 10.1.

Figure 10.1: This graph shows the value of the variance (teal),
squared bias (orange), and test error (red) as we increase the
value of the regularization parameter, λ. Through validation,
we can find the value of λ that minimizes the sum of the squared
bias and variance, resulting in the best test performance.

10.5 Comparison of Regularization Methods
While both LASSO and ridge regression are able to provide improvements to the
standard linear least squares regression problem, there are important differences
between these two methods. We will consider the statistical implications of these
methods, as well as the use of these methods for feature selection.

10.5.1 Statistical Justification
We can think of both l2 and l1 regularized regression problems as maximum
a posteriori (MAP) estimation. Treat the weight vector, W , as a random

Machine Learning | S. Pohland

CHAPTER 10. REGULARIZATION

vector and let w be a realization. Similarly, treat the vector of labels, Y , for a
given dataset as a random vector, and let y be a realization.
To find the optimal weight vector, ŵ, we solve the following problem:

ŵ = arg max
w

fW |Y (w|y).

Because the natural log is monotonically increasing, we can equivalently solve

ŵ = arg max
w

ln fW |Y (w|y).

Using Bayes theorem, we can express the conditional PDF in the objective as

fW |Y (w|y) =
fY |W (y|w)fW (w)

fY (y)
∝ fY |W (y|w)fW (w).

Therefore, the optimal weight vector can also be expressed as the solution to

ŵ = arg max
w

ln
(
fY |W (y|w)fW (w)

)
.

From our previous assumptions, the ith component of the weight vector, w, is
a realization of the random variable Wi, which is the ith component of W . If
we assume that the random variables W1, . . . ,Wd are independent and can be
modeled by the PDFs fW1

(w1), . . . , fWd
(wd), then we can express fW (w) as

fW (w) =

d∏
i=1

fWi
(wi).

Similarly, the ith component of the label, y, is a realization of the random
variable Yi, which is the ith component of Y . If we assume that the random
variables Y1, . . . , Yn are independent and can be modeled by the conditional
PDFs fY1|W (y1,w), . . . , fYn|W (yn|w), then we can express fY |W (y|w) as

fY |W (y|w) =

n∏
i=1

fYi|W (yi|w).

Under these assumptions, our objective can be expressed as

ŵ = arg max
w

ln

(
n∏
i=1

fYi|W (yi|w)

d∏
i=1

fWi(wi)

)
.

Using properties of the natual log, we can equivalently express this problem as

ŵ = arg max
w

(
n∑
i=1

ln fYi|W (yi|w) +

d∑
i=1

ln fWi
(wi)

)
.

Machine Learning | S. Pohland

CHAPTER 10. REGULARIZATION

We can think of ridge regression as MAP estimation where we impose a Gaussian
prior with zero mean on the weights. More specifically, we assume that weight
wi is sampled from the distribution N (0, σ), which has the PDF

fWi(wi) =
1√
2πσ

e−w
2
i /2σ

2

.

We can think of LASSO as MAP estimation where we impose a Laplace prior
with zero mean on the weights. More specifically, we assume that weight wi is
sampled from the distribution Laplace(0, b), which has the PDF

fWi
(wi) =

1

2b
e−|wi|/b.

Because both of these PDFs have mean zero, they assume that weights are close
to zero. Figure 10.2 depicts these two PDFs for the one-dimensional case.

Figure 10.2: The red curve is a zero-mean Gaussian PDF and
the blue curve is a zero-mean Laplace PDF for the weight w ∈ R.

10.5.2 Feature Selection
It is interesting to compare the optimal solutions of the ridge regression and
LASSO problems. I will denote ŵ1 as the optimal solution to the LASSO
problem and ŵ2 as the optimal solution to the ridge regression problem.

The ith component of the solution for LASSO, ŵ1, is equal to zero if and only
if |yTxj | ≤ λ

2 , where y is the vector of labels and xj is the jth column of the
design matrix X. The ith component of the solution for ridge regression, ŵ2,
is equal to zero if and only if yTxj = 0. It is relatively straightforward to prove
these facts, but I will not include proofs in these notes.

Assuming the above conditions are true, there is a range of values of yTxj for
which the ith component of ŵ1 equals zero and only a single value for which the
ith component of ŵ2 equals zero. This implies that ŵ1 is more likely to have
zero components, so we say that ŵ1 is more likely to be sparse. This concept
is demonstrated in figure 10.3. If certain features do not have strong predictive
power, we want their weights to be set to zero, so this is an advantage of LASSO
over ridge regression. LASSO can be used for feature selection.

Machine Learning | S. Pohland

CHAPTER 10. REGULARIZATION

Figure 10.3: In both images, the red ellipses are the isocontours
of the linear least squares objective. The image on the left
also depicts the isocontours of the LASSO regularization term,
λ||w||1, and the image on the right also depicts the isocontours
of the ridge regression regularization term, λ||w||22. Feasible
values of w occur where the isocontours of the least squares
objective and the regularization term intersect. The value of
the objective function is the sum of the isocontour values at
these intersections. For LASSO, an optimal value of w often
occurs when one of its components is equal to zero, so LASSO
encourages sparse solutions. This is not true for ridge regression.

Machine Learning | S. Pohland

Chapter 11

Decision Trees

11.1 Overview of Decision Trees
Decision trees are a supervised learning method used for both classification
and regression. They use the tree data structure with two types of nodes:

1. Leaf nodes – A leaf node is the last node in a branch of the tree, and it
determines the label of the data contained at that node.

2. Internal nodes – An internal node is any node in the tree that is not a
leaf node, and it splits on a feature value for some threshold value.

As an example, suppose we are trying to decide whether to go out for a picnic.
Our set of features include the outlook, percent humidity, and wind speed. The
outlook is a categorical variable, which takes on the values: sunny, rainy, and
overcast. The percent humidity is a quantitative variable, which ranges from 0
to 100. The wind speed is another quantitative variable, which ranges from 0
to 50. Figure 11.1 shows an example decision tree for this problem. Note that
decision trees can effectively handle both categorical and quantitative features.

11.1.1 Advantages & Disadvantages
Decision trees have a number of advantages, as well as disadvantages compared
to other supervised learning techniques. A few are listed below:

Advantages Disadvantages
1. Fast and simple 1. Tend to have high variance

2. Interpretable and easy to explain 2. Often have poor performance
3. Invariant under scaling/translation compared to other methods

4. Robust to irrelevant features

73

CHAPTER 11. DECISION TREES

Figure 11.1: This is an example decision tree used to determine
whether to go out for a picnic. There are three internal nodes:
outlook (x1), humidity (x2), and wind (x3). There are five leaf
nodes, which specify whether to go for a picnic (yes or no).
The outlook node splits on its three values: sunny, rainy, and
overcast. The humidity node splits at the threshold value 75,
and the wind node splits at the threshold value 20.

11.2 Binary Decision Trees for Classification

11.2.1 Decision Tree Nodes
As mentioned in the previous section, decision trees are composed of internal
nodes, which split on feature values for some thresholds, and leaf nodes, which
determine the label of a data point. We will focus on binary decision trees, for
which each internal node splits on only one feature based on a single threshold
value. Each internal node contains the following information:

1. the set of data samples contained at that node,

2. the corresponding label of each sample point,

3. pointers to left and right children of that node, and

4. the split rule composed of the feature and threshold value.

Each leaf node contains the following information:

1. the set of data samples contained at that node,

2. the true corresponding label of each sample point, and

3. the predicted label of each sample point at that node.

Machine Learning | S. Pohland

CHAPTER 11. DECISION TREES

For internal nodes, the left and right child nodes are defined by the split rule.
Limiting ourselves to two-way splits on single features, suppose that the split
rule is composed of the feature index j and threshold β. Let X be an n × d
design matrix and define S ⊆ {1, 2, . . . , n} as a set of sample point indices
corresponding to the subset of data contained at the current node. The sample
points contained at the left and right child nodes are given by the following sets:

1. Left child – Sl = {i ∈ S : Xij < β} and yl = {yi : i ∈ Sl}

2. Right child – Sr = {i ∈ S : Xij ≥ β} and yr = {yi : i ∈ Sr}

11.2.2 Decision Tree Training
The greedy top-down learning heuristic to train a binary decision tree for clas-
sification uses recursion with a function similar to the one in algorithm 3. The
top-level call for this function is GrowTree(S, y, root), where S = {1, 2, . . . , n}
is the full set of indices and y ∈ Rn is the full label vector contained at the root.

Algorithm 3: Algorithm for Decision Tree Training
1 Function GrowTree(S, y, node):
2 Set data to S and labels to y
3 if stopping condition met then
4 Set predicted labels of node
5 else
6 Choose best split
7 Split data and labels based on split rule
8 Initialize left and right child nodes
9 GrowTree(Sl, yl, left child node)

10 GrowTree(Sr, yr, right child node)
11 end
12 End Function

11.2.3 Choosing the Best Split
Line 6 of algorithm 3 says to choose the best split for an internal node. This
entails choosing both a feature and threshold to split on. To choose the best
split, we must consider different types of features and the possible thresholds
for each type. We also need to define what is meant by the "best split," which
depends on our choice of cost function. Often, we use the entropy to define the
cost of a given split and choose the split that offers the greatest information
gain. We will discuss possible thresholds, a definition of best split, entropy, and
information gain in greater detail in the following sections.

Machine Learning | S. Pohland

CHAPTER 11. DECISION TREES

Possible Thresholds

We will assume that at each internal node, we split on a single feature, giving us
axis-aligned splits. To choose the best split for an internal node, we try to split
each feature at each possible threshold. The possible splits for a given feature
depends on the category that it falls into. There are three types of features:

1. Binary – A binary feature can take on one of two discrete values. Gen-
erally, we map one of the discrete values to 1 and one to 0, so the value of
a binary feature is either 1 or 0. For example, one of our features may be
student status, which can either be grad or undergrad. We will map grad
to the binary value 1 and undergrad to the binary value 0. For a binary
feature, there is only one possible split, so we choose the threshold β = 1

2 .

2. Categorical – A categorical features takes on one of k discrete values.
For a categorical feature with more than two discrete values, we could use
binary splits or multi-way splits. We will are focusing on binary decision
trees, which only use binary splits. Typically for categorical features, we
apply a one-hot encoding to turn one categorical feature with k possible
values into k binary features. For example, one of our features may be
color, which can be red, blue, or green. We could replace this feature with
three new features: one that is 1 if the color is red and 0 otherwise, one
that is 1 if the color is blue and 0 otherwise, and one that is 1 if the color
is green and 0 otherwise. Now for each of these binary features, there is
only one possible split, so we choose the threshold β = 1

2 .

3. Quantitative – A quantitative feature can take on a range of values. For
a quantitative feature, we sort the set, S, based on the numerical value of
that feature, then we try splitting halfway between each pair of unequal
consecutive values to determine the best threshold value to split on.

Definition of Best Split

Now we have covered the possible threshold values for each type of feature, but
we do not yet have a way to determine the best feature to split on and the best
threshold for quantitative features. Let S ⊆ {1, 2, . . . , n} be the set of sample
points considered at a given node. Sl is the set of samples in the left child node,
and Sr is the set of samples in the right child node. Let J(S) be the cost of the
set S. To choose the best split for a given node, we try all possible splits and
choose the split that minimizes either the sum or the weighted average of the
cost of the child sets, Sl and Sr. More often, we use the weighted average:

|Sl|J(Sl) + |Sr|J(Sr)

|Sl|+ |Sr|
,

where | · | is the cardinality function, indicating the number of elements in a set.

Machine Learning | S. Pohland

CHAPTER 11. DECISION TREES

Entropy Cost Function

There are various choices for the cost function, J . One option is to label a set,
S, with the class, c ∈ C, that labels the most points in S and define J(S) as
the number of points in S that are not in class c. This is not a good choice
of cost function because there are many different splits that all have the same
total cost, and we want a cost function that better distinguishes between them.

A better and more common method is to measure the entropy. Let X be some
discrete random variable with PMF pX(x). The surprise of X taking on the
value x is defined as − log2 pX(x). This can be interpreted as how surprised we
are by this probabilistic event occurring. Suppose that X is 1 if the sun rises
today and 0 otherwise. The probability that the sun rises today is effectively
one, so this event gives us zero surprise. The probability that the sun does
not rise today is effectively zero, so this event gives us infinite surprise. The
entropy is the expected surprise, which can be expressed as

H(X) =
∑
x∈X
−pX(x) log2 pX(x).

Intuitively, higher entropy indicates more randomness or uncertainty. If X is a
Bernoulli random variable with p = 1, as in the example of the sun rising, then
the entropy is at a minimum of zero, and there is no randomness or uncertainty.
If X is a Bernoulli random variable with p = 1

2 , as in the example of a fair coin
flip, then the entropy is one, and there is a high amount of randomness and
uncertainty. A plot of entropy for a Bernoulli variable is shown in figure 11.2.

Figure 11.2: This is a plot of the entropy H(S) for a set S with
two classes, where p is the probability that a point is in class C
and 1− p is the probability that it is not in class C.

If X is a uniform random variable with more than two possible values, then
we have even more randomness/uncertainty. For a uniform random variable, as
we increase the number of discrete values, we increase the amount of random-
ness/uncertainty, as indicated by the increasing value of the entropy.

Machine Learning | S. Pohland

CHAPTER 11. DECISION TREES

Now that we have a definition of entropy, suppose that the label y is represented
by the random variable Y and define pc := pY (c) for all c ∈ C. Generally, we
do not know the true underlying distribution of the labels, but we can estimate
pc as the proportion of points in the set S that are in class c:

pc ≈
∣∣{i ∈ S : yi = c}|

|S|
.

The entropy of an index set S is then given by

H(S) = −
∑
c∈C

pc log2 pc.

If all the points in S belong to the same class, the entropy is at a minimum
of zero. The entropy is at a maximum when the class distribution is uniform.
Figure 11.2 shows a plot of the entropy, H(S), for a set, S, with only two classes.

Information Gain Metric

If S is the set of samples considered at a given node, Sl is the set of samples in
the left child node after a split, and Sr is the set of samples in the right child
node, then the weighted average of the entropy after a split is given by

Hafter =
|Sl|H(Sl) + |Sr|H(Sr)

|Sl|+ |Sr|
.

If H(S) is the entropy before the split, the information gain is defined as

IG(node) = H(S)−Hafter = H(S)− |Sl|H(Sl) + |Sr|H(Sr)

|Sl|+ |Sr|
.

If we use entropy as the cost for determining the best split, then we choose the
split that minimizes Hafter, which is equivalent to maximizing the information
gain. Intuitively, information gain quantifies how much knowledge we gain about
the labels of the sample data after a split. Note that the information gain is
always non-negative because you cannot become more uncertain after gaining
new knowledge. The information gain is generally positive and is only zero if
the left and right child nodes have the same class distribution as the parent
node. For example, suppose the label of a sample point can either be 0 or 1,
and a third of the points in the parent node have label 0, which implies two
thirds have label 1. The only way the information gain can be zero is if a third
of the points in the left child node have label 0 and a third of the points in the
right child node also have label 0. This is demonstrated in figure 11.3.

Because the entropy function (shown on the left in figure 11.3) is strictly concave,
the information gain IG(node) = H(S)−Hafter is non-negative and is only zero
if the two child sets both have exactly the same class distributions. Because the
percentage of misclassified points (shown on the right in figure 11.3) is concave
but not strictly concave, splitting the parent set may not change the weighted

Machine Learning | S. Pohland

CHAPTER 11. DECISION TREES

Figure 11.3: The plot on the left is the entropy for a set S
that contains only two classes. The plot on the right is the
percentage of points that are misclassified. For both plots, pC
is the probability that a point is in class C and 1 − pC is the
probability that it is not in C. In both plots, the leftmost dot
is H(Sl) and the rightmost dot is H(Sr). The average entropy
Hafter after the split falls on the line connecting H(Sl) and
H(Sr) directly beneath the entropy of the parent H(S).

average of the percentage of misclassified points. The bigger problem is that
many different splits give the same weighted average cost.

Note that while the entropy is a common and effective cost function to use for
decision tree classification, it is not the only function that works well. Many
concave functions work fine, but strictly concave functions are generally better.

11.2.4 Choosing the Stopping Criterion
Line 3 of algorithm 3 indicates that we stop growing the decision tree once some
stopping condition is met. The most simple stopping scheme is to keep dividing
tree nodes until each leaf node is pure, meaning that each leaf node contains
only sample points of the same class. If we allow a decision tree to continue
subdividing until leaf nodes are pure, it will achieve zero training error for any
data set. However, it is often preferable to stop subdividing tree nodes before
all the leaf nodes are pure. We will discuss various reasons for stopping before
leaf nodes are pure, as well as common stopping criteria. We will also discuss
how the stopping condition relates to the bias-variance trade-off.

Reasons to Stop Early

As mentioned, it is often preferable to stop subdividing tree nodes before the
leaf nodes are pure. There are various reasons why stopping earlier is preferable:

1. Stopping earlier limits the tree size, which reduces the time required for
training and classification and is desirable when we have large data sets.

Machine Learning | S. Pohland

CHAPTER 11. DECISION TREES

2. Subdividing nodes until leaf nodes are pure may result in overfitting.

3. For some datasets, it may simply not make sense for leaf nodes to be pure
due to noise or overlapping distributions.

Common Stopping Criteria

If we decide that we want to stop subdividing nodes before each leaf node is
pure, there are various stopping criteria we can use. We may choose to stop if

1. the next split does not reduce entropy/error enough,

2. most of the node’s points (e.g. > 95%) are in the same class,

3. the node contains few sample points (e.g. < 10), or

4. the depth of the tree along that branch is too great.

The required reduction in entropy/error at each split, the maximum percentage
of points in a node within a given class, the minimum number of sample points
in a node, and the maximum depth of the tree can all be chosen via validation.
We can also use validation to decide whether splitting a node improves the
validation accuracy. This method is generally most effective, but it can be slow.

Bias-Variance Trade-Off

The stopping criteria directly affects the depth of the decision tree, which is
related to the bias-variance trade-off. In general, if a decision tree is very deep,
the model has higher variance and lower bias, making it more likely to overfit.
Intuitively, if a decision tree is very deep, there are many conditions checked
before classifying a test point, which makes the decision rule too fine-grained
and sensitive to small perturbations. Consider that if only one of the many
conditions is not satisfied, then this might result in a completely different pre-
diction. On the other hand, if the tree is very shallow, the model has high bias
and low variance, making it more likely to underfit. In this case, the decision
rule is too coarse and the decision tree may not have enough expressive power.

11.2.5 Decision Tree Classification
After choosing a method to select the best split at each internal node and
choosing the stopping criterion to stop growing the tree, we train our decision
tree with the training data and corresponding labels. Once we have trained
our decision tree, we can use it to predict the classes of unseen data. Given an
n′ × d matrix of test data, we recursively traverse the decision tree to predict
the labels of the data samples, using a function similar to the one in algorithm
4. The top-level call for this function is TraverseTree(S, root), where the root
node contains the full set of indices: S = {1, 2, . . . , n′}.

Machine Learning | S. Pohland

CHAPTER 11. DECISION TREES

Algorithm 4: Algorithm for Decision Tree Classification
1 Function TraverseTree(S, node):
2 if at leaf node then
3 Return predicted label of node
4 else
5 Split data based on split rule
6 TraverseTree(Sl, left child node)
7 TraverseTree(Sr, right child node)
8 end
9 End Function

For classification problems, if we continue splitting until each leaf node is pure,
then the predicted label of each leaf node is simply the class that all of the
sample points at that node fall into. If we choose to stop before each leaf node
is pure, then leaves that contain multiple classes can either return the majority
vote of its sample points or the class posterior probabilities.

11.2.6 Algorithms & Running Times
It is important to consider the computation time required for training and mak-
ing predictions with a binary decision tree for classification.

Training

Consider an n × d design matrix containing n sample points with d features
each. We assume that any categorical features have been converted to binary
features such that d is the number of binary and quantitative features after
one-hot encoding categorical features. If all the features are binary, we try O(d)
splits at each internal node. If all the features at an internal node with n′ sample
points are quantitative, we can sort the sample points in O(n′d) time. We can
compute the entropy for the first split in O(n′), then walk through the list and
update the entropy for each successive split in O(1) time, summing to a total
of O(n′) time for each of the d features. With this trick, the time spent at each
internal node is O(n′d), regardless of whether we are working with binary or
quantitative features. Each of the n sample points participates in at most O(h)
nodes, where h is the depth of the decision tree. Therefore, the total running
time is no greater than O(ndh). This is a surprisingly reasonable running time.

Classification

To classify a test point, we move down the tree until we reach a leaf node, then
we return the label of that leaf node. The worst case time is O(h), where h
is the depth of the decision tree. If all of the features are binary, the depth
is no greater than the number of features d. If we have quantitative features,
the decision trees may be deeper than the number of features. In practice, the
depth is usually no greater than O(log n), but this is not always true.

Machine Learning | S. Pohland

CHAPTER 11. DECISION TREES

11.3 Decision Tree Variations

11.3.1 Regression
Previously, we discussed how to use binary decision trees for classification. We
can also use decision trees to find a piecewise constant regression function. Given
a set of sample point indices, S, instead of using the entropy, H(S), as the cost
function, we will define the cost of S as

J(S) =
1

|S|
∑
i∈S

(yi − µS),

where µS is the mean label for the sample points in S. To find a piecewise
constant regression function, at each internal node, we choose the split that
minimizes the weighted average costs of the children after the split.

For classification problems, we can continue splitting until each leaf node is pure
and each leaf will return the label of its sample points, or we can choose to stop
early and leaves that contain multiple classes can return the majority vote of
its sample points or the class posterior probabilities. For regression problems,
we will generally never continue splitting until each leaf node is pure. Instead,
a leaf node should return the average label of its sample points.

11.3.2 Pruning
When discussing stopping criteria, we said that in the basic stopping scheme,
we keep dividing nodes until each leaf node is pure. We also provided other
stopping criteria that can be used to stop before each leaf node is pure. Pruning
is a better alternative to stopping early that also works to limit overfitting. To
implement pruning, we grow the decision tree until all leaf nodes are pure. Then,
we greedily remove each split whose removal improves validation performance.
Pruning is often more effective than stopping early because a split that does not
seem to provide much information gain may be followed by a split that does.

11.3.3 Multivariate Splits
We previously assumed that our decision tree would always split on a single
feature. We can find splits that are not axis-aligned by using other classification
algorithms or by generating them randomly. Multivariate splits may improve the
accuracy of the decision tree, but they may result in less interpretability and/or
speed. Multivariate splits could allow us to find a linear decision boundary,
instead of a stair-step boundary, as shown in the example in figure 11.4.

Machine Learning | S. Pohland

CHAPTER 11. DECISION TREES

Figure 11.4: As shown in the top image, a decision tree needs
many axis-aligned splits to approximate a diagonal linear deci-
sion boundary, but the boundary can be approximated with a
single multivariate split, as shown in the bottom image.

Machine Learning | S. Pohland

Chapter 12

Nearest Neighbors Classifier

12.1 Overview of Nearest Neighbors
Suppose that we want to estimate the label of a query point, q. One approach
is to look at the labels of the sample points closest to this query point. The
k nearest neighbors (k-NN) classifier finds the k sample points closest to
q, using some choice of distance metric. If the labels of the sample points are
quantitative, then the average label of the k nearest points is used to estimate
the label of q. If the labels of the sample points are categorical, then the most
popular class among the k nearest points is used to estimate the label of the
query point. For classification tasks, we could also return a histogram of class
probabilities, which tries to estimate the posterior probabilities of the classes
from the k sample points. However, the accuracy of these estimates depends on
the value of k. This method works best when you have a large amount of data.

12.1.1 Tuning the Hyperparamter
In general, the decision boundary of the k-NN classifier becomes more smooth
as the value of the hyperparameter, k, increases. For smaller values of k, we
have low bias and high variance, so we risk overfitting. For larger values of k,
we have low variance and high bias, so we risk underfitting. Generally, the ideal
value of k depends on how dense the training data is. As the data gets denser,
it is best to increase the value of k. The impact of the hyperparameter, k, on
the decision boundary for a k-NN classifier is demonstrated in figure 12.1.

12.1.2 Performance of Nearest Neighbors
If you have a large amount of training data, then the nearest neighbors classifier
can work quite well. If the training and test points are drawn independently
from the same probability distribution, then as the number of sample points, n,
approaches infinity, the 1-NN error rate is strictly less than 2B − B2, where B
is the Bayes risk. If we are only working with two classes, then as n approaches

84

CHAPTER 12. NEAREST NEIGHBORS CLASSIFIER

Figure 12.1: This figure depicts the decision boundary of the k nearest neighbors
classifier for three choices of k: k = 1 (left), k = 10 (center), and k = 100 (right).
In all three images, the solid line is the decision boundary of the k-NN classifier
and the dotted line is the Bayes decision boundary. Notice that the 1-NN
classifier results in very a non-smooth boundary with islands that gives us zero
training error but does not generalize well. This classifier is badly overfitting
the data. The 100-NN classifier results in a smooth boundary that is close to
linear and does not represent the data well. This classifier is badly underfitting
the data. The 10-NN classifier does better than the other two classifiers, finding
a boundary that is reasonably close to the Bayes decision boundary.

inifinity, the 1-NN error rate is less than or equal to 2B− 2B2. Additionally, as
the number of sample points, n, and the hyperparameter, k, approach infinity
such that k/n approaches zero, the k-NN error rate converges to the Bayes risk.

12.2 Nearest Neighbor Algorithms
There are various algorithms used by the k-NN classifier. We will consider
the exhaustive k-NN algorithm, an algorithm using Voronoi diagrams, and an
algorithm that uses data structures referred to as k-d trees.

12.2.1 Exhaustive k-NN Algorithm
In the exhaustive k-NN algorithm, we scan through all n sample points,
computing the squared distance from the current point to the query point, q.
As we scan, we maintain a max-heap of the k nearest neighbors seen so far,
which are keyed by their corresponding squared distances. When we encounter
a sample point closer to q than the point at the top of the heap, we remove the
top point and insert the new point into the heap based on its squared distance.

The time to train the classifier is O(0), and the time to make a prediction for a
single query point is O(nd+n log k), where d is the number of features. Interest-
ingly, if we scan through the sample points in random order, the expected time

Machine Learning | S. Pohland

CHAPTER 12. NEAREST NEIGHBORS CLASSIFIER

to make a prediction for a single query point is O(nd+ k log n log k). However,
this is generally not recommended because it may result in cache misses.

In some cases, we can preprocess training points to obtain sublinear prediction
time. If we have a low number of features (d ≤ 5), we can use Voronoi diagrams.
If we have a medium number of features (6 ≤ d ≤ 30), we can use k-d trees. If
we have a high number of dimensions (d > 30), the exhaustive k-NN features is
fastest, but we can speed it up using PCA (dicussed in section 14).

12.2.2 Voronoi Diagrams
Let X be a set of n sample points with d features, which can be expressed as

X = {xi ∈ Rd, i = 1, . . . , n}.

The Voronoi cell of some point w ∈ X is defined as the set of points in the
feature space that are closer to w than to any other point in the set X :

Vor(w) = {p ∈ Rd : ||p−w||2 ≤ ||p− xi||2, ∀xi ∈ X}.

Note that the Voronoi cell is always a convex polyhedron or polytope. The
Voronoi diagram of X is the set of all the Voronoi cells for X . In the worst
case, the size (i.e. number of vertices) of a Voronoi diagram is O(ndd/2e). In
practice, the size of the Voronoi diagram is often O(n). Figure 12.2 provides an
example of what a Voronoi diagram might look like in two dimesnions.

Figure 12.2: An example of a Voronoi diagram for a set contain-
ing two-dimensional sample points. Each green dot is a sample
point, and the polyhedrons are the Voronoi cells for each point.

To use a Voronoi diagram for nearest neighbors classification, we also need a
data structure that can perform point location. In point location, we are given

Machine Learning | S. Pohland

CHAPTER 12. NEAREST NEIGHBORS CLASSIFIER

a query point, q ∈ Rd, and we want to find the point, w ∈ X , for which
q ∈ Vor(w). If we only have two dimensions, then we should use a trapezoid
map for point location. For two dimensions, the time to compute the Voronoi
diagram is O(n log n) and the time to make a prediction for a query point using
a trapezoidal map is O(n log n). If we are working with sample points that have
more than two dimensions, then we should use a binary space partition (BSP)
tree for point location. Unfortunately, it is difficult to characterize the running
time for this strategy, but it is likely to be reasonably fast in 3-5 dimensions.

As an important note, the standard Voronoi diagram only supports nearest
neighbor classification with k = 1. If you want to use k > 1, then you can use
an order-k Vornoi diagram, which has a cell for each possible k nearest neighbors.
However, order-k Vornoi diagrams are not commonly used in practice.

12.2.3 k-d Trees
While Voronoi diagrams are useful for 1-NN classification in low dimensions,
k-d trees are much simpler and generally faster in 6 or more dimensions. The
k-d trees are essentially decision trees used for nearest neighbor search. The
major differences between k-d trees and decision trees are listed below.

1. In k-d trees, we choose the feature to split on based on the feature with
the greatest width, meaning that we choose feature î such that

î, ĵ, k̂ = arg max
i,j,k

(
Xji −Xki

)
.

Another option to avoid computing the greatest width is to rotate through
the features, meaning that we split on the first feature at depth one, the
second feature at depth two, and so on. This allows us to build the tree
faster by a factor of O(d).

2. To choose the threshold value of the feature we split on, we can either
choose the median point for feature î or the box center: 1

2 (Xĵî − Xk̂î).
Choosing the median point as the threshold value guarantees blog2 nc tree
depth and O(nd log n) time to build the tree. If we rotate through the
features instead of choosing the feature with the greatest width, then the
time required to build the tree is just O(n log n). If we choose to split at
the box center, instead of the median, then we improve the aspect ratio of
the boxes, but this may unbalance our tree. One strategy for building k-d
trees is to alternate between choosing the median and choosing the center
as the threshold, which also guarantees an O(log n) tree depth.

3. Each internal node stores a single sample point that lies in the node’s box.
Usually we choose to store the splitting point for that node.

Figure 12.3 provides an example of a k-d tree for a two-dimensional dataset.

Machine Learning | S. Pohland

CHAPTER 12. NEAREST NEIGHBORS CLASSIFIER

Figure 12.3: The top image depicts 11 two-dimensional sample
points, and the bottom images provides a possible k-d tree for
the given training data. Starting with the entire feature space,
R2, we first split on the x feature and store the median sample
point 6 in the root node. We then split the left half space on the
y feature and store the median 1 and split the right half space
on the y feature and store the median 10. We then split the
upper left quadrant on the x feature and store 5, split the lower
left quadrant on x and store 4, split the upper right quadrant on
x and store 7, and split the lower right quadrant on x and store
8. Note that each subtree represents an axis-aligned box. The
entire tree is the feature space R2, the first left subtree is the
left half space, the first right subtree is the right half space, the
next set of subtrees are quadrants, and the final set of subtrees
(which are simply leaf nodes) are smaller boxes in R2.

Suppose that given a query point, q, the sample point s ∈ X is the closest point
in the training set to q. Rather than searching for the nearest neighbor, s, we
can relax the nearest neighbors problem to find a sample point w ∈ X such that

||q −w||2 ≤ (1 + ε)||q − s||2,

where ε is some small positive constant. If we choose ε = 0, then we get back the
exact nearest neighbors problem. If we are working with sample points in high
dimensions, then it is a good idea to solve the approximate nearest neighbors

Machine Learning | S. Pohland

CHAPTER 12. NEAREST NEIGHBORS CLASSIFIER

problem because it can greatly decrease the computation time.

To solve this problem using k-d trees, we keep track of the nearest sample point
(or k nearest sample points) found so far and maintain a binary min-heap of
unexplored subtrees, which are keyed by the distance from q. As we move
through the tree, the distance to the nearest sample point found decreases and
the distance to the nearest unexplored subtree increases. The query tries to
avoid searching most of the boxes/subtrees by searching the boxes closest to
the query point first. The search stops when the distance from q to the kth
nearest neighbor found so far is less than or equal to the distance from q to the
nearest unexplored box multiplied by the factor 1 + ε. At this point, we have
found one point within a distance (1 + ε)r from the query point, where r is the
distance from the query point to its true nearest neighbor. Figure 12.4 provides
an example of the search process for a query point, q, using a k-d tree.

Figure 12.4: In the figure above, the query point, q, is shown
in green, and the closest sample point seen so far is shown in
light blue. There are four unexplored boxes/subtrees: B1, B2,
B3, and B4. The distance, dNN , from the query point to the
nearest sample point is shown in dark blue, and the distance,
dBi, from the query point to the ith box/subtree is shown in
purple. Because we only explore boxes/subtrees that are closer
to the query point q than the nearest neighbor (NN) seen so far,
we need to search boxes B1 and B2 for closer sample points, but
we do not need to search boxes B3 and B4.

To use a k-d tree for nearest neighbors classification, we start by initializing a
binary min-heap, Q, of unexplored trees keyed by the distance from the query

Machine Learning | S. Pohland

CHAPTER 12. NEAREST NEIGHBORS CLASSIFIER

point, q, the nearest neighbor (NN) found so far, and the distance, dNN , to
the nearest neighbor found so far. While there are still unexplored subtrees
sufficiently closer to the query point than the nearest neighbor found so far, we
determine the closest unexplored box/subtree, B. We then remove this subtree
from the heap and look at the single sample point, w, stored in the node B.
If the distance from the query point to the sample point is less than than the
distance to the nearest neighbor found so far, thenw is the new nearest neighbor
and we store its distance from q. We then look at the left and right child nodes of
the current subtree. If a child node is sufficiently closer to the query point than
the nearest neighbor seen so far, we insert this node in the heap of unexplored
subtrees with the distance from q to the given child node as its key. Once there
are no more unexplored subtrees sufficiently closer than the nearest neighbor
seen so far, we return the nearest neighbor (NN). Algorithm 5 describes the
process to find the first nearest neighbor to a query point, q, using a k-d tree.

Algorithm 5: 1-NN Query Using k-d Tree
1 Q← heap containing root node with key 0
2 NN ← None
3 dNN ←∞
4 while Q not empty and (1 + ε) minnode∈nodes(Q) key(node) < dNN do
5 B ← arg minnode∈nodes(Q) key(node)
6 Q← Q \B
7 w ← data(B)
8 if dist(q, w) < dNN then
9 NN ← w

10 dNN ← dist(q, w)

11 end
12 Bl ← left child node of B
13 if (1 + ε)dist(q, data(Bl)) < dNN then
14 insert

(
Q,Bl, dist(q,data(Bl)

)
15 end
16 Br ← right child node of B
17 if (1 + ε)dist(q, data(Br)) < dNN then
18 insert

(
Q,Br,dist(q,data(Br)

)
19 end
20 end
21 return NN

Note that we are not limited to using the Euclidean distance and could use any lp
norm as the distance function. If we want to find the k nearest neighbors, instead
of just the first nearest neighbor, we replace NN and dNN in the algorithm with
a max-heap holding the k nearest neighbors seen so far keyed by their distances
to the query point. As a final note, some useful software for performing nearest
neighbors classification with k-d trees is ANN, FLANN, and GeRaF.

Machine Learning | S. Pohland

Chapter 13

Neural Networks

13.1 Overview of Neural Networks
Neural networks (NNs) are a very popular supervised learning technique that
can effectively approximate nonlinear relationships between data and labels.
They are more commonly used for classification problems but can easily be used
for regression as well. A NN model is defined by the following components:

1. Architecture – The model architecture specifies the flow of information
between the network layers, which defines the composition of functions
that the network performs from input to output.

2. Cost/loss function – The model aims to minimize a cost/loss func-
tion, which depends on the true labels and predicted labels. The most
commonly used loss functions are the mean squared error and the cross-
entropy loss, which are discussed in section 13.1.1.

3. Optimization algorithm – The optimization algorithm is used to min-
imize the cost/loss function. Often we use stochastic or batch gradient
descent, but other algorithms may be used as well.

4. Hyperparameters – Our neural network depends on a set of hyper-
paramters, including the learning rate and batch size among others.

Each layer of a neural network is defined by the following components:

1. Parameterized function – The parameterized function defines the layer’s
map from input to output. Most often, we use an affine function combined
with a nonlinear activation function (i.e. f(x) = σ(Wx+ b), where x
is the input, W is the weight matrix, b is the bias vector, and σ is the
activation function). There are various choices for the nonlinear activa-
tion function. Some common ones are the sigmoid, ReLU, softmax, and
hyperbolic tangent functions, which are discussed in section 13.1.2.

91

CHAPTER 13. NEURAL NETWORKS

2. Parameters – Each layer is composed of a set of parameters. If we are
using the affine function combined with a nonlinear activation function,
then our parameters include the weights, W , and biases, b.

13.1.1 Loss & Cost Functions
Suppose we have a single data sample, x ∈ Rd, and a corresponding vector of
true labels, y ∈ Rk, where k is the number of classes/output features. The
neural network outputs a prediction ŷ ∈ Rk, which predicts the values of y.

Loss Function

To train a neural network, we need to pick a loss function, L(ŷ,y), which maps
predicted labels, ŷ ∈ Rk, and true labels, y ∈ Rk, to some non-negative value.
Below are the two most commonly used loss functions:

1. Squared error loss – The squared error loss function is defined such that

L(ŷ,y) = ||ŷ − y||22.

The gradient of the loss with respect to the predicted values is given by

∇ŷL(ŷ,y) = 2(ŷ − y).

Note that the squared error loss is more often used for regression problems
because it gives a measure of the distance between real-valued labels.

2. Cross-entropy loss – The cross-entropy loss function, which is also re-
ferred to as the logistic loss function, is defined such that

L(ŷ,y) = −
k∑
j=1

yj ln ŷj .

The gradient of L with respect to ŷ can be expressed component-wise as

∂

∂ŷj
L(ŷ,y) = −yj

ŷj
.

Note that the cross-entropy loss function is generally used for classification
problems because it assumes that inputs are probability distributions over
classes. When using the cross-entropy loss for classification, it is strongly
recommend that the true labels are defined such that

k∑
j=1

yj = 1.

Typically, we chose the labels to be one-hot vectors defined such that

yj =

{
1 if x ∈ class j
0 otherwise

.

Machine Learning | S. Pohland

CHAPTER 13. NEURAL NETWORKS

Cost Function

In addition to the loss function defined for a single sample, we choose a cost
function, J(h), to map a hypothesis function, h, to the total cost over n samples.
The predicted label is given by ŷi = h(xi), where xi is the ith data sample.
The most commonly used cost function is the mean cost, which is given by

J(h) =
1

n

n∑
i=1

L(h(xi), yi).

The gradient of the mean cost with respect to the prediction ŷi = h(xi) is

∇ŷiJ(h) =
1

n

∂L

∂ŷi
.

13.1.2 Activation Functions
As mentioned previously, each layer of the neural network generally maps an
input, x ∈ Rd, to an output defined by f(x) = σ(Wx + b), where W ∈ Rk×d
is a weight vector, b ∈ Rk is a bias vector, and σ : Rk → Rk is a nonlinear
activation function. We will define z := Wx + b as the intermediate vector
and h := f(x) as the output vector. The relationship between the intermediate
vector and the output is given by h = σ(z), where σ is applied component-wise
to z. Below are some of the most common nonlinear activation functions:

1. Sigmoid/logistic function

If σ is the sigmoid/logistic function, the ith element of the output is

hi = s(zi) =
1

1 + e−zi
.

The Jacobian of h with respect to z can be expressed component-wise as

[
Dzh

]
ij

=
∂hi
∂zj

=

{
hi(1− hi) if i = j

0 otherwise
.

Figure 13.1: This is a graph of the output of the sigmoid/logistic
function hi = s(zi) over the values of zi. Notice that hi ∈ (0, 1).

As demonstrated in figure 13.1, the output of the sigmoid/logistic activa-
tion function is always between zero and one. Therefore, it is commonly

Machine Learning | S. Pohland

CHAPTER 13. NEURAL NETWORKS

used at the output layer of neural networks used for two-class prediction
problems with k = 1. The output of the network can then be interpreted
as the probability that a data sample is in the class of interest.

2. Softmax function

If σ is the softmax function, the ith element of the output is

hi =
ezi∑k
j=1 e

zj
.

This definition of the softmax function is numerically unstable, so more
often, we define a modified version of this function such that

hi =
ezi−m∑k
j=1 e

zj−m
where m := max

j∈{1,...,k}
zj .

Whether we use the true softmax function or the stable softmax function,
the Jacobian of h with respect to z can be expressed component-wise as

[
Dzh

]
ij

=
∂hi
∂zj

=

{
hi(1− hi) if i = j

−hihj otherwise
.

Like the sigmoid function, the softmax function is commonly used in the
output layer of neural networks. The softmax function outputs k values
in the range (0, 1) that add up to one, so it can be used to represent the
probability distribution over k discrete classes. For this reason, neural
networks that use the softmax activation function at the output can be
used for multi-class prediction. We can then interpret hi as the probability
that a data sample belongs to class i. Note that if we only have two classes,
we can equivalently use the sigmoid function as discussed previously.

3. Rectified linear unit (ReLU) function

If σ is the ReLU function, which we also refer to as the ramp function
or hinge function, then we can express the ith element of the output as

hi = max{0, zi} =

{
zi if zi ≥ 0

0 otherwise
.

The Jacobian of h with respect to z can be expressed component-wise as

[
Dzh

]
ij

=
∂hi
∂zj

=

{
1 if i = j, zi ≥ 0

0 otherwise
.

The ReLU function is popular for neural networks with many hidden layers
and large training sets because its derivative is very fast to compute.

Machine Learning | S. Pohland

CHAPTER 13. NEURAL NETWORKS

Figure 13.2: This is a graph of the output of the ReLU function
hi = max{0, zi} over the values of zi.

4. Hyperbolic tangent function

If σ is the hyperbolic tangent function, the ith element of the output is

hi = tanh(zi) =
ezi − e−zi
ezi + e−zi

.

The Jacobian of h with respect to z can be expressed component-wise as

[
Dzh

]
ij

=
∂hi
∂zj

=

{
2s(2zi)− 1 if i = j

0 otherwise
,

where s is the sigmoid/logistic function defined previously.

Figure 13.3: This is a graph of the output of the hyperbolic
tangent function hi = tanh(zi). Notice that hi ∈ (−1, 1).

13.1.3 Backpropagation
To learn the function that relates inputs to labels, we generally use mini-batch
gradient descent with backpropagation to update the parameters of the network.
In mini-batch gradient descent, we operate on subsets of the data matrix. In the
backpropagation algorithm, we first compute the forward pass of the network,
during which we send a mini-batch of input data through the network. The
result is a set of outputs, which we use to compute our cost/loss function. We
then take the derivatives of this cost with respect to the parameters of each layer,

Machine Learning | S. Pohland

CHAPTER 13. NEURAL NETWORKS

starting with the output of the network and using the chain rule to propagate
backwards through the layers. This is called the backward pass. By starting at
the output layer and propagating backwards, we can reuse computed derivatives
to avoid computing the same derivatives multiple times. Backpropagation is an
example of a dynamic programming algorithm that has a time complexity that
is linear in the number of layers in the network, making it efficient.

13.2 Multilayer Perceptrons (MLPs)
A multilayer perceptron (MLP), which we also refer to as a feed-forward,
fully-connected neural network, is a network composed of multiple layers
of perceptrons (recall section 3.3) with threshold activation functions. Each
layer of an MLP performs an affine transformation of an input, followed by a
nonlinear activation function. Figure 13.4 shows the basic structure of an MLP.

Figure 13.4: This is an example of a three-layer multilayer per-
ceptron (MLP), which has an input layer, an output layer, and
two hidden layers. Each layer may contain any number of nodes.

While each individual perceptron is a linear classifier, by combining individual
perceptrons in layers and introducing nonlinear activation functions, multilayer
perceptrons can learn arbitrary decision functions. Because they can capture
any classification boundary, multilayer perceptrons are referred to as universal
classifiers. This is a useful property, but other learning algorithms, such as
decision trees, are also considered universal classifiers.

13.2.1 Fully-Connected Layer
Multilayer perceptrons (MLPs) are composed of any number of fully-connected
layers. A fully-connected layer is composed of the following elements:

Machine Learning | S. Pohland

CHAPTER 13. NEURAL NETWORKS

1. X ∈ Rb×d – A mini-batch of b data samples, each with d features, which
is the input to the first layer of the neural network.

2. Y ∈ Rb×k – The true labels corresponding to each of the b data samples,
which have k possible classes/output features.

3. n[l] – The number of nodes in layer l. Note that in the first layer, n[−1] = d,
where d is the number of input features.

4. W [l] ∈ Rn[l−1]×n[l]

– A matrix of weights connecting layer l− 1 to layer l.

5. b[l] ∈ Rn[l]

– A vector of bias terms connecting layer l − 1 to layer l.

6. σ[l] – The nonlinear activation function applied at layer l.

7. Z[l] ∈ Rb×n[l]

– The intermediate output of layer l before applying the
activation function, which is defined such that

Z[l] = H [l−1]W [l] + 1b
(
b[l]
)T
.

Note that in the first layer, H [−1] is simply the input data sample, X.

8. H [l] ∈ Rb×n[l]

– The output of layer l, which is defined such that

H [l] = σ[l](Z[l]) = σ[l]
(
H [l−1]W [l] +

(
b[l]
)T)

.

9. Ŷ ∈ Rb×k – The predicted labels for b data samples with k possible
classes/output features, which is the output of the final layer.

Figure 13.5 shows a detailed example of a three-layer MLP with the components
labeled. In this example, we assume we have a single input data sample, x, with
d = 4 features and a corresponding label, y, with k = 3 possible classes/output
features. The output of the MLP is a k-dimensional prediction, ŷ.

13.2.2 Forward Pass
In the forward pass of a feed-forward, fully-connected neural network, we com-
pute the output, H [l], of each layer sequentially, using the function defined for
each layer of the network. The output of one layer is used as the input to the
next, thus a neural network is a composition of functions. Within each layer, we
cache the input H [l−1] and the output H [l] to be used in the backward pass.

13.2.3 Backward Pass
In the backward pass of a feed-forward, fully-connected neural network, we
compute the derivatives of the downstream cost, J , with respect to the input,
H [l−1], the weights, W [l], and the bias, b[l], for each layer of the network.
Recall that in the backward pass, we propagate gradients backwards through
the network. We start by computing the gradients in the output layer and cache
these values to be used when computing the gradients in earlier layers.

Machine Learning | S. Pohland

CHAPTER 13. NEURAL NETWORKS

Figure 13.5: On the left is a three-layer perceptron. The data
sample, x ∈ R4, is the input to the neural network, and the
predicted label, ŷ ∈ R3, is the output. In the first layer, we
compute h[0] = σ[0]

(
xW [0] + b[0]

)
. In the next layer, we com-

pute h[1] = σ[1]
(
h[0]W [1]+b[1]

)
. In the final layer, we compute

ŷ = σ[2]
(
h[1]W [2] + b[2]

)
. On the right is a single fully con-

nected neuron, demonstrating the computations that are per-
formed component-wise.

13.3 Convolutional Neural Networks (CNNs)
Convolutional neural networks (CNNs), which are also referred to as Con-
vNets, are a popular variation of neural networks used for image and audio
processing. Images and audio files contain very large inputs, which make it
impractical to train or use an MLP for image or audio processing. To handle
very large inputs, we use CNNs, which depend on the following ideas:

1. Local connectivity – A hidden unit in an early layer connects only to a
small patch of units in the previous layer.

2. Shared weights – Groups of hidden units share the same set of input
weights, which are called a kernel/filter/mask. In CNNs, we learn sev-
eral kernels, where each kernel operates on every patch of an image. The
number of hidden units in the first hidden layer is equal to the number of
kernels multiplied by the number of patches. We can think of hidden units
as learned features. CNNs learn features from multiple patches simulta-
neously, then apply those features everywhere. For images, filters in early
layers tend to include edge detectors. If a network learns to detect edges
in one patch of the input, then every patch now has an edge detector. In
this way, CNNs exploit the repeated structure in images and audio.

CNNs are composed of convolutional layers (discussed in section 13.3.1) and
pooling layers (discussed in section 13.3.2). CNNs generally combine convo-
lutional layers with pooling layers to progressively shrink the spatial size of the
input until is is small enough to be fed into an MLP for classification. Figure
13.6 shows an example of the typical architecture of a CNN.

Machine Learning | S. Pohland

CHAPTER 13. NEURAL NETWORKS

Figure 13.6: Given an input image, this CNN predicts the digit
(0-9). It feeds the image through a convolutional layer, followed
by a pooling layer, then another convolutional layer, followed by
another pooling layer. It is then flattened and fed into a fully-
connected neural network, which outputs the predicted digit.

13.3.1 Convolutional Layer
In a convolutional layer, each kernel is convolved with the input across every
channel. A convolutional layer is composed of the following elements:

1. X ∈ Rb×d1×d2×c – A mini-batch of b input tensors with c channels whose
heights are d1 and whose widths are d2.

2. Y ∈ Rb×k – The true label vector with k classes/output features corre-
sponding to the b data samples.

3. n[l] – The number of channels in layer l. In the first layer, n[−1] = c, where
c is the number of input channels.

4. W [l] ∈ Rk1×k2×n[l−1]×n[l]

– A tensor of kernel weights at layer l, where k1
is the height of the kernel and k2 is the width of the kernel for the given
layer. The pair (k1, k2) is commonly referred to as the kernel size.

5. b[l] ∈ Rn[l]

– A vector of bias terms for layer l.

6. σ[l] – The nonlinear activation function applied at layer l.

7. (s1, s2) – The size of the step taken in the convolution operation at the
given layer, where s1 is the stride length in the first dimension and s2 is
the stride length in the second dimension.

8. (p1, p2) – The amount of zero padding applied to the input tensor at the
given layer, where the top and bottom of the input is padded with p1 zeros,
and the left and right of the input is padded with p2 zeros. For the input
tensor, the padded input is of the shape b× (d1 + 2p1)× (d2 + 2p2)× c.

Machine Learning | S. Pohland

CHAPTER 13. NEURAL NETWORKS

9. Z[l] ∈ Rb×r1×r2×n[l]

– The feature map or intermediate output of layer
l before applying the activation function, where r1 is the height of the
feature map after performing convolution at the given layer and r2 is the
width. The height and width of the feature map for that layer are

r1 =
d1 − k1 + 2p1

s1
+ 1 and r2 =

d2 − k2 + 2p2
s2

+ 1.

The feature map at position (x, y) for a single channel, n, is defined as

Z[l][:, x, y, n] = (H [l−1] ∗W [l])[:, x, y, n]

=

k1−1∑
i=0

k2−1∑
j=0

n[l−1]−1∑
k=0

W [l][i, j, k, n]H [l−1][:, s1x+ i, s2y + j, k] + b[l][n].

Note that we assumeH [l−1] has already been padded with the appropriate
number of zeros. At the first layer, H [−1] is simply the input tensor, X.
An example of the convolution operation is shown in figure 13.7.

10. H [l] ∈ Rb×r1×r2×n[l]

– The output of a layer l, which is defined such that

H [l] = σ[l](Z[l]).

Figure 13.7: This is an example of a convolution operation for
a single input tensor, H [l−1], and tensor of filters, W [l]. The
input tensor,H [l−1], shown on the left, represents a 7×7 image
with one channel, which has not been padded. The tensor of
filters,W [l], shown in the middle, represents a 3×3 kernel with
one input and one output channel. We assume that we use a
stride length of one. The feature map/intermediate output is
the tensor, Z[l], shown on the right, which has one channel and
the spatial dimensions 5×5 because we are using a stride length
of one. The kernel slides along the image and is multiplied by
each patch of the input to produce the output.

Machine Learning | S. Pohland

CHAPTER 13. NEURAL NETWORKS

13.3.2 Pooling Layer
Pooling layers are used in convolutional neural networks to downsample the
input feature maps. Each pooling layer has a kernel of shape k1 × k2, a stride
length (s1, s2), and a padding size (p1, p2). A pooling layer takes in an input
tensor, X, of shape b × d1 × d2 × c, where b is the batch size, d1 is the height
of the input, d2 is the width of the input, and c is the number of channels
in the input. The pooling layer then outputs an output tensor, Y , of shape
b × r1 × r2 × c, where b is the batch size, r1 is the height of the output, r2 is
the width of the output, and c is the number of channels in the output. Pooling
layers to not change the number of channels, but they reduce the number of
spatial dimensions (i.e. r1 < d1 and r2 < d2). The height and width of the
output after pooling can be expressed in terms of the kernel parameters as

r1 =
d1 − k1 + 2p1

s1
+ 1 and r2 =

d2 − k2 + 2p2
s2

+ 1.

For each channel, we take either the maximum or average of all of the points
in the window of size k1 × k2, then we slide the window by s1 pixels in the
direction of the first dimension. When we reach the end of the input tensor in
that direction, we slide the window by s2 pixels in the direction of the second
dimension. We repeat these steps until we have performed this operation over
the entire padded input image. When we take the maximum value at each patch,
we call this operation max pooling. Similarly, when we take the average value
at each patch, we call this operation average pooling. If we use max pooling,
then the output of the pooling layer can be expressed as

Y [m,x, y, c] = max
{
X[m, a, b, c] : a ∈ [s1x, s1x+ k1], b ∈ [s2y, s2y + k2]

}
.

If we use average pooling, then the output of the pooling layer is

Y [m,x, y, c] =
1

k1

1

k2

s1x+k1∑
a=s1x

s2y+k2∑
b=s2y

X[m, a, b, c].

Note that for both max and average pooling operations, we assume the input,
X, has been padded with the appropriate number of zeros.

13.4 Neural Network Heuristics
While there is theory surrounding neural networks, neural network performance
is often improved by following heuristics that appear during the practical imple-
mentation of networks. We will discuss a few of the currently existing heuristics.

13.4.1 Sigmoid Unit Saturation
Define s as the vector obtained by applying the sigmoid function component-
wise to some input vector, x. The derivative of s with respect to x is s�(1−s).

Machine Learning | S. Pohland

CHAPTER 13. NEURAL NETWORKS

One issue with the sigmoid activation function is that when the output of a
unit using this activation function is close to zero or one (i.e. s ≈ 0 or 1) for
most training points, then s′ = s � (1 − s) ≈ 0. When the derivative of s is
close to zero, gradient descent changes very slowly, and we say that the unit is
stuck. This is an issue because it can slow down training significantly and may
prevent us from finding an optimal solution. We call this issue the sigmoid
unit saturation problem or the vanishing gradient problem. The graph of
the sigmoid function in figure 13.8 helps demonstrate this challenge.

Figure 13.8: This is a graph of the sigmoid function. Notice that
when s is close to 0 or 1, its slope is close to 0. We call these
regions flat spots. When s is close to 0.5, the sigmoid function is
approximately linear. We call this highlighted section the linear
region. Ideally, we want to operate in the linear region.

There are several ways to help correct this issue:

1. For a unit with a fan-in of η (i.e. a unit with η incoming network con-
nections), initialize each of the η incoming edges to have a random weight
with mean 0 and standard deviation 1/

√
η.

2. If the sigmoid function is used at the output layer, we could set the target
values of the output to be 0.85 and 0.15, instead of 1 and 0.

3. Modify backpropagation to add a small constant (often around 0.1) to s′.

4. Use the cross-entropy loss function instead of the squared error loss. Note
that this only helps with stuck output units, not hidden units.

5. Replace the sigmoid activation function with the ReLU function. The
ReLU activation function is less likely to contribute to vanishing gradients
because it always has a constant non-zero gradient for positive inputs.

13.4.2 Heuristics for Faster Training
Neural networks can take a long time to train compared to other classifiers we
have studied. Below are some heuristics to decrease training time:

Machine Learning | S. Pohland

CHAPTER 13. NEURAL NETWORKS

1. Fix the sigmoid unit saturation (vanishing gradient) problem using the
methods described in section 13.4.1.

2. When we have large, redundant data sets, use stochastic gradient descent,
instead of batch gradient descent. One epoch of gradient descent presents
every training sample once. Stochastic gradient descent often takes many
epochs, but it makes significantly more progress per epoch compared to
batch gradient descent. If the training sample is very large, stochastic
gradient descent may not require many epochs to converge.

3. Normalize the data by centering each feature so its mean is zero and scaling
each feature to have unit variance. Centering the data makes it easier for
hidden units to get into a good operating region for the sigmoid and ReLU
activation functions. Scaling the data makes the objective function better
conditioned, so gradient descent converges faster.

4. "Center" the hidden units by replacing the sigmoid activation function
with the hyperbolic tangent activation function. Recall that the output of
the sigmoid function ranges from 0 to 1, while the output of the hyperbolic
tangent function ranges from −1 to 1.

5. Use a different learning rate for each layer of weights. Earlier layers have
smaller gradients, so they need a larger learning rate.

6. Use emphasizing schemes. Uncommon data samples are learned more
slowly, so we may choose to emphasize them by presenting examples from
rare classes more often or with a larger learning rate. We can also choose
to emphasize misclassified samples. Note that emphasizing schemes may
backfire if our data contains outliers.

7. Use second order approximation. Newton’s method is generally impracti-
cal because the Hessian is too expensive to compute, but we can use other
second order methods. The nonlinear conjugate gradient works well for
smaller neural networks with small data in regression problems. Note that
this should be used with batch descent only because it is too slow to use
with redundant data. We can also use Stochastic Levenberg Marquardt,
which approximates a diagonal Hessian.

8. Use acceleration schemes, such as RMSprop, Adam, and AMSgrad. These
are relatively simple to implement and are quite popular.

13.4.3 Heuristics for Avoiding Bad Local Minima
The cost function used for neural networks generally has many local minima,
and it is unlikely that we will reach the true global minimum. However, there
are some heuristics to avoid "bad" local minima:

1. Fix the sigmoid unit saturation (vanishing gradient) problem using the
methods described in section 13.4.1.

Machine Learning | S. Pohland

CHAPTER 13. NEURAL NETWORKS

2. Use stochastic gradient descent, instead of batch gradient descent. The
"random" motion seen in stochastic gradient descent can get you out of
shallow local minima. Note that stochastic gradient descent does not
always help with this issue, but in some cases it does.

3. Introduce momentum into gradient descent. Momentum can carry you
through shallow local minima to deeper ones by preserving some amount of
momentum between iterations. Note that this works with both batch and
stochastic gradient descent. Gradient descent with momentum is imple-
mented by first setting the momentum to be ∆w0 := −η∇wJ(w)

∣∣
w=w0

.
The update rule for the weight vector is then given by

wk+1 = wk + ∆wk, where

∆wk = −η∇wJ(w)
∣∣
w=wk

+ β∆wk−1.

The parameter β < 1 specifies how much momentum persists between
iterations. Often, β is set to 0.9, but there is no one method to choose β.

13.4.4 Heuristics to Avoid Overfitting
There are various methods to reduce the variance of neural networks to avoid
overfitting. Some of these heuristics are provided below:

1. Use ensembles of neural networks (discussed in section 17). We can use
random initial weights and bagging (section 17.2) with neural networks,
but this method is time intensive. Neural networks are already relatively
slow to train, so this is not a popular method to reduce variance.

2. Introduce l2 regularization, which is also referred to as weight decay.
We can add the term λ||w||22 to the cost function, where w is a vector
containing all of the weights in the weight matrices for each layer. By
adding this term to the cost function, the weight decays by a factor 1 −
2ελ. By increasing the value of λ, we limit the size of the weights, which
generally reduces overfitting at the risk of underfitting.

3. Introduce dropout to emulate ensembles of neural networks with only one
network. During training, we can temporarily disable a random subset of
the units and frequently change which subset is disabled. This gives the
advantages of ensembles without the higher computation times.

4. Use fewer hidden units. The number of hidden units is a hyperparameter
used to adjust the bias-variance trade-off. As we increase the number of
hidden units, we increase the number of parameters, which increases the
representational capacity of the network. If we have too many hidden
units, we risk overfitting, but if we have too few, we risk underfitting.

Machine Learning | S. Pohland

CHAPTER 13. NEURAL NETWORKS

5. Augment the training data with similar synthetic examples. For image
processing, we can produce synthetic examples by modifying the original
images by rotating, changing the contrast, editing the colors, etc. The
more "volume" of the feature space that is covered by sample points, the
more likely you are to get a good decision boundary that generalizes well
to new points. Therefore, by generating similar synthetic data, the neural
network can learn a decision function more robustly.

13.4.5 Heuristics to Avoid Underfitting
Similar to the previous section, there are various methods to reduce the bias of
neural networks to avoid underfitting. Some of these heuristics are provided:

1. Add more units to hidden layers. As we increase the number of units in
the hidden layers, we increase the number of parameters, which increases
the representational capacity of the network. If we have too few hidden
units, we risk underfitting, but if we have too many, we risk overfitting.

2. Add an additional hidden layer. By adding an additional hidden layer,
we are increasing the number of parameters, making the neural network
more expressive and allowing it to learn more decision functions.

3. Normalize the input data. As mentioned previously, centering the data
makes it easier for hidden units to get into a good operating region for the
sigmoid and ReLU activation functions. We also previously noted that
scaling the data makes the objective function better conditioned. This
makes it more likely to find a good local minimum.

13.4.6 Initializing Parameters
If two hidden units connected to the same inputs with the same activation func-
tion are initialized with the same parameters, then the deterministic learning
algorithm will constantly update both of these units the same way. Therefore,
it is important that hidden units connected to the same inputs with the same
activation function are given different initial parameters. A popular scheme
to initialize parameters is the Xavier initialization scheme, which sets each
layer’s weights to values chosen from a random uniform distribution.

Machine Learning | S. Pohland

Part III

Unsupervised Learning
Techniques

106

Chapter 14

Principal Component
Analysis (PCA)

14.1 Overview of PCA
Principal component analysis (PCA) is an unsupervised learning technique
used for dimensionality reduction. Given sample points in the feature space,
Rd, we want to find k < d directions that capture most of the variation in
the data. Ideally, we would like to reduce high-dimensional data to a simpler,
low-dimensional representation without losing too much information.

14.1.1 Purpose of PCA
There are several benefits of principal component analysis (PCA):

1. PCA reduces the number of dimensions used to represent data samples,
making it faster and less expensive to perform some computations.

2. PCA removes irrelevant dimensions, which helps reduce variance in learn-
ing algorithms by limiting the effects of noisy or unreliable data. This helps
to avoid overfitting when we perform classification or regression. PCA is
similar to feature selection, except the "features" chosen by PCA are not
axis-aligned. Rather, they are a linear combination of input features.

3. We are generally unable to visualize data in more than three dimensions.
However, if we use PCA to transform our data into two or three dimen-
sions, we can visualize a rough representation of the data.

Due to the first two benefits of principal component analysis (PCA), it is often
used to preprocess data used in regression and classification problems.

107

CHAPTER 14. PRINCIPAL COMPONENT ANALYSIS (PCA)

14.1.2 Orthogonal Projections
Before discussing PCA in more detail, it is useful to review orthogonal projec-
tions. Suppose we have a design matrix, X ∈ Rn×d, which has been centered
such that the mean of each sample point, xi ∈ Rd, is zero. Let w be some vector
in the feature space, Rd, and ŵ be its corresponding unit vector of length one.
The vector projection of a point xi onto the vector w is

~xi =
(
xTi ŵ

)
ŵ =

(
xTi

w

||w||2

)
w

||w||2
=
xTi w

||w||22
w.

Often, we are only interested in the scalar projection of xi onto w, which is

x̃i = xTi ŵ = xTi
w

||w||2
=
xTi w

||w||2
.

Suppose we have k orthogonal directions w1, . . . ,wk, where wj ∈ Rd. The
vector projection of xi onto the subspace spanned by these directions is

~xi =

k∑
j=1

(
xTi ŵj

)
ŵj =

k∑
j=1

xTi wj
||wj ||22

wj .

Similarly, the scalar projection of sample point onto this subspace is

x̃i =

k∑
j=1

xTi ŵj =

k∑
j=1

xTi wj
||wj ||2

.

We refer to the k scalar values in the summation as the principal coordinates.

14.2 PCA Interpretations
In principal component analysis (PCA), we want to to find the best k directions
to project our data onto. There are various interpretations of PCA that all
allow us to find the same k directions. We will cover three PCA interpretations:
fitting a Gaussian to choose directions of greatest variance, maximizing the
sample variance of projected data, and minimizing the mean squared projection
error. We could also interpret PCA as finding the best rank-k approximation
of a matrix. However, we will not go over this interpretation in these notes.

In each interpretation, we assume we have a design matrix, X ∈ Rn×d, which
has been centered such that the mean of the n sample points, x1, . . . ,xn, is
the zero vector. Notice that the matrix XTX ∈ Rd×d is a symmetric positive
semidefinite matrix. Because it is a symmetric real matrix, it has d real eigenval-
ues, λ1, . . . , λd, and corresponding orthogonal unit vectors, v1, . . . ,vd, which we
refer to as the principal components. Because XTX is positive semidefinite,
all of its eigenvalues are non-negative. We will assume that λ1 ≥ . . . ≥ λd ≥ 0.

Machine Learning | S. Pohland

CHAPTER 14. PRINCIPAL COMPONENT ANALYSIS (PCA)

14.2.1 Fitting a Gaussian
In the first interpretation of PCA, we fit a Gaussian distribution to the data
using maximum likelihood estimation. Then we choose the k Gaussian axes
with the greatest variance. Recall from section 7 that if we assume our data
samples, x1, . . . ,xn, come from an anisotropic Gaussian distribution with mean
µ, then the maximum likelihood estimate of the covariance matrix is given by

Σ̂ =
1

n

n∑
i=1

(xi − µ)(xi − µ)T .

For the design matrixX ∈ Rn×d composed of sample points x1, . . . ,xn, we can
equivalently express the maximum likelihood estimate of the covariance as

Σ̂ =
1

n

(
X − µ1Td

)T (
X − µ1Td

)
.

Because we assume that X has been centered such that its mean, µ, is the zero
vector, the maximum likelihood estimate of the covariance matrix becomes

Σ̂ =
1

n
XTX.

The eigenvectors corresponding to the k largest eigenvalues of the sample covari-
ance matrix, Σ̂, represent the k directions with the greatest variance. The sam-
ple covariance matrix, Σ̂, has the same eigenvectors as XTX, so to choose the
best k-dimensional subspace, we pick the eigenvectors v1, . . . ,vk, corresponding
to the k largest eigenvalues of XTX. Because the eigenvectors are unit vectors,
the principal coordinates of xi are given by xTi vj for j = 1, . . . , k.

14.2.2 Maximizing Variance
The next interpretation of PCA assumes that we want to find the directions in
the feature space that maximize the sample variance of projected data. The idea
is that we want to maximize the amount of variability (or information) preserved
by the projected data samples. Because we are only interested in the direction,
we want to find the unit vectorw that solves the following optimization problem:

arg max
w:||w||2=1

Var
(
{x̃1, . . . , x̃n}

)
.

To make this optimization easier to solve, we can express the variance as

Var
(
{x̃1, . . . , x̃n}

)
=

1

n

n∑
i=1

(
x̃i − E[x̃i]

)2
.

Because we assume that the data samples have zero mean, by the linearity of
expectation, the projected points also have zero mean. Therefore,

Var
(
{x̃1, . . . , x̃n}

)
=

1

n

n∑
i=1

x̃2i =
1

n

n∑
i=1

(xTi w
||w||2

)2
.

Machine Learning | S. Pohland

CHAPTER 14. PRINCIPAL COMPONENT ANALYSIS (PCA)

We can equivalently express the variance of the projected points as

Var
(
{x̃1, . . . , x̃n}

)
=

1

n

1

||w||22

n∑
i=1

(
xTi w

)2
=

1

n

1

||w||22

n∑
i=1

(
xTi w

)T (
xTi w

)
=

1

n

1

||w||22

n∑
i=1

wTxix
T
i w =

1

n

1

||w||22
wT

(
n∑
i=1

xix
T
i

)
w

=
1

n

1

||w||22
wTXTXw =

1

n

wTxTXw

wTw
.

This leaves us with the following optimization problem:

arg max
w:||w||2=1

1

n

wTxTXw

wTw
.

Because we are only interested in the optimal solution, we can remove the
constant term and search for the direction that solves the following problem:

arg max
w:||w||2=1

wTxTXw

wTw
.

The objective function in this optimization problem is the Rayleigh quotient of
XTX and w. From our knowledge of Rayleigh quotients, the optimal value
of this optimization problem is the maximum eigenvalue, λ1, and the optimal
solution is the corresponding eigenvector, v1. To understand why this is true,
please see my linear algebra notes. If we constrainw to be orthogonal to v1, then
the optimal value is the second largest eigenvalue, λ2, and the optimal solution
is the corresponding eigenvector, v2. If we constrain w to be orthogonal to
both v1 and v2, then the optimal value is λ3 and the optimal solution is v3.
Therefore, if we want k orthogonal directions that maximize the variance of the
projected points, then we should choose v1, . . . ,vk. Notice that this is the same
result we found from the Gaussian interpretation of PCA.

14.2.3 Minimizing Projection Error
The next interpretation of PCA assumes that we want to find the directions
that minimize the mean squared projection distance, which we refer to as the
projection error. Because we are only interested in the direction, we want to
find the unit vector w that solves the following optimization problem:

arg min
w:||w||2=1

n∑
i=1

||xi − ~xi||22.

Notice that we can equivalently express the mean squared projection error as

n∑
i=1

||xi − ~xi||22 =

n∑
i=1

(
||xi||22 − 2xTi ~xi + ||~xi||22

)
.

Machine Learning | S. Pohland

CHAPTER 14. PRINCIPAL COMPONENT ANALYSIS (PCA)

From the definitions of scalar and vector projections, we can equivalently write
n∑
i=1

||xi − ~xi||22 =

n∑
i=1

(
||xi||22 − 2xTi

(
xTi w

||w||22
w

)
+ ||x̃iŵ||22

)

=

n∑
i=1

(
||xi||22 − 2

(
xTi w

||w||2

)2

+ x̃2i ||ŵ||
2
2

)

=

n∑
i=1

(
||xi||22 − 2x̃2i + x̃2i ||ŵ||

2
2

)
.

Because ŵ is a unit vector with a norm of one, we can express this as
n∑
i=1

||xi − ~xi||22 =

n∑
i=1

(
||xi||22 − 2x̃2i + x̃2i

)
=

n∑
i=1

(
||xi||22 − x̃2i

)
=

n∑
i=1

||xi||22 −
n∑
i=1

x̃2i .

In the previous section, we expressed the sample variance of projected data as

Var
(
{x̃1, . . . , x̃n}

)
=

1

n

n∑
i=1

x̃2i .

Therefore, we can express the mean squared projection error as
n∑
i=1

||xi − ~xi||22 =

n∑
i=1

||xi||22 − nVar
(
{x̃1, . . . , x̃n}

)
.

Our optimization problem can then be expressed as

arg min
w:||w||2=1

(
n∑
i=1

||xi||22 − nVar
(
{x̃1, . . . , x̃n}

))
.

Because we are only interested in the optimal solution, we can remove the
constant term and search for the direction that solves the following problem:

arg min
w:||w||2=1

−nVar
(
{x̃1, . . . , x̃n}

)
.

This optimization problem can equivalently be expressed as

arg max
w:||w||2=1

Var
(
{x̃1, . . . , x̃n}

)
.

Now we can see that minimizing the mean squared projection error is equivalent
to maximizing the variance of the projected data. Therefore, if we want k
orthogonal directions that minimize the mean squared projection error, then we
should choose v1, . . . ,vk, as shown in the previous section.

Machine Learning | S. Pohland

CHAPTER 14. PRINCIPAL COMPONENT ANALYSIS (PCA)

14.3 More on PCA

14.3.1 Choosing Size of k
Previously, we assumed that the value of k is predetermined. However, if PCA
is being used as a preprocessor for a supervised learning algorithm, k is a hy-
perparameter, which is generally chosen via validation. Depending on the value
of k we choose, we will capture a different percentage of the variability in the
training data. More specifically, the percentage of variability captured is

% of variability =

∑k
i=1 λi∑d
i=1 λi

∗ 100.

Note that the rank ofXTX is equal to the number of non-zero eigenvalues. This
means that if the rank ofXTX is r, then λ1, . . . , λr > 0 and λr+1 = . . . , λd = 0.
If we choose k = r and project our data onto a k dimensional subspace using
PCA, the percentage of variability captured will be∑r

i=1 λi∑d
i=1 λi

∗ 100 =

∑r
i=1 λi∑r

i=1 λi +
∑d
i=r+1 λi

∗ 100 =

∑r
i=1 λi∑r
i=1 λi

∗ 100 = 100.

Therefore, if we project our data onto a r-dimensional subspace, where r is the
rank of XTX, we recreate a perfect representation of our data with no loss.

14.3.2 Singular Value Decomposition (SVD)
There are two main issues with principal component analysis (PCA):

1. Computing XTX takes O(nd2) time, which is an issue if d is large.

2. IfXTX is poorly conditioned, its eigenvectors are numerically inaccurate.

One way to improve upon these issues is to use the singular value decomposition
(SVD) of the design matrix, X ∈ Rn×d. Recall that XTX has d eigenvalues,
which are the squared singular values ofX. It has d corresponding eigenvectors,
which are the right singular vectors of X. This is useful because we can find
the k greatest singular values of X and corresponding right singular vectors in
O(ndk) time. This is less time than it would take to computeXTX and perform
spectral decomposition to find the eigenvalues and eigenvectors of XTX.

Let r denote the rank of X and σ1, . . . , σr denote the non-zero singular values
ofX. The SVD ofX isX = UΣV T , where U ∈ Rn×n is an orthogonal matrix
whose columns are the left singular vectors, V ∈ Rd×d is an orthogonal matrix
whose columns are the right singular vectors, and Σ ∈ Rn×d is given by

Σ =

[
Σr 0r×(d−r)

0(n−r)×r 0(n−r)×(d−r)

]
,

where Σr = diag(σ1, . . . , σr). Recall that the principal coordinates of a sample
point xi are given by xTi vj , where vj is the jth eigenvector of XTX or jth

Machine Learning | S. Pohland

CHAPTER 14. PRINCIPAL COMPONENT ANALYSIS (PCA)

right singular vector of X. Because V is an orthogonal matrix, V TV is the
identity matrix. Therefore, we can express the inner product xTi vj as

xTi vj = (XV)ij = (UΣV TV)ij = (UΣ)ij = σjUij .

Now we can see that row i of the matrix UΣ gives us the principal coordinates of
the sample point xi, so we do not need to explicitly compute the inner products.

14.3.3 PCA vs. LASSO
We presented PCA as a method to preprocess data by projecting data into a
low-dimensional feature space. Recall from section 10.5.2 that LASSO can also
be used as a method for feature subset selection. The main difference between
PCA and LASSO for the purpose of feature selection is that while LASSO
selects a subset of the original features, PCA produces features that are linear
combinations of the original features. Also, while PCA allows you to specify
how many features are chosen, LASSO does not allow you to select a number
of features and may not even provide a strict subset of the original features.

Machine Learning | S. Pohland

Chapter 15

Clustering

15.1 Overview of Clustering
Clustering is an unsupervised learning technique used to partition data into
groups of points with similar features such that points in a cluster are more
similar than points across clusters. Clustering is used for the following purposes:

1. Discovery – Clustering can be used to find new points similar to those in
a given cluster. For example, Netflix may use clustering to find movies
similar to those you liked in the past.

2. Hierarchy – Clustering can be used to find hierarchical relationships among
items. For example, biologists may use clustering to classify groups of
biological organisms based on their genes.

3. Graph Partitioning – Clustering can be used to partition graphs, which
may be useful for image segmentation or finding groups in social networks.

4. Quantization – Clustering can be used to compress a data set by reducing
the number of choices.

15.2 k-Means Clustering
The goal of k-means clustering, which is also referred to as Lloyd’s algo-
rithm, is to partition a set of n d-dimensional data points, x1, . . . ,xn, into k
disjoint clusters, S1, . . . , Sk. For now, assume that we know the value of k. We
want to group the samples points to minimize the variance within each of the
clusters. The sample variance of the points in cluster i is

1

d|Si|
∑
xj∈Si

||xj − µi||22,

114

CHAPTER 15. CLUSTERING

where µi is the mean of the ith cluster, Si, which is given by

µi =
1

|Si|
∑
xj∈Si

xj .

The total within-cluster variation is the sum of the variances, which is given by

k∑
i=1

1

d|Si|
∑
xj∈Si

||xj − µi||22.

Because k-means clustering is an unsupervised learning technique, we assume
that we do not know the true labels of the sample points. However, if xj is
assigned to cluster Si, it is given the label yj = i. To minimize the within-
cluster variation, we want to find the labels that solve the following problem:

arg min
y∈Rn

k∑
i=1

1

d|Si|
∑
j:yj=i

||xj − µi||22, where µi =
1

|Si|
∑
j:yj=i

xj .

We can remove the constant term and equivalently express this problem as

arg min
y∈Rn

k∑
i=1

1

|Si|
∑
j:yj=i

||xj − µi||22, where µi =
1

|Si|
∑
j:yj=i

xj .

Note that an optimal clustering on k+1 ≤ n clusters has an objective value that
is at least as small as that of the optimal clustering on k clusters. Furthermore,
if the number of clusters is equal to the number of sample points (i.e. k = n),
then every sample point can be placed in its own cluster. If this is the case,
then the mean of cluster i would be µi = xi for i = 1, . . . , n, so the objective
function would be zero, which is the minimum possible value.

15.2.1 k-Mean Heuristic
The optimization problem given previously is combinatorial, which is NP-hard
and solvable in O(nkn) time by trying every partition. This is a very slow
algorithm if n is large. Rather than trying every possible partition to obtain
the best possible partition, we can use a heuristic to find a good partition that
is likely not optimal. The following is the the k-means heuristic:

1. Initialize the algorithm using a method from section 15.2.2.

2. (a) Compute the mean, µi, of each cluster based on the assigned labels.

(b) Assign each data point, xj , a label, yj = i, corresponding to the
nearest mean, µi. If there is a tie among the closest means and one
option is to stay the current cluster, do not change the label of xj .

3. Repeat steps 2a and 2b until the means and labels stop changing.

Machine Learning | S. Pohland

CHAPTER 15. CLUSTERING

Note that both steps two and three decrease the k-means objective function
(unless they do not change anything, in which case the objective stays the same).
Because the objective is monotonically decreasing and there are finitely many
assignments, the algorithm must terminate eventually. While the algorithm is
generally fast in practice, it could theoretically take an exponential number of
iterations (i.e. O(kn) time). As another note, the algorithm always finds a local
minimum but will generally not find a global minimum.

Figure 15.1: This is an example of 2-means clustering. In the
first step, we randomly assign all of the data points to the red
or blue class. In step two, we compute the means of the two
clusters based on those labels. In step three, we label the data
points as blue if they are closer to the blue mean and red if
they closer to the red mean. In step four, we recompute the
means. In step five, we relabel the points. Finally, in step six,
we recompute the means one last time. At this point we have
reached equilibrium, so the algorithm terminates.

15.2.2 Initializing the k-Means Algorithm
There are a few different methods for initializing the k-means algorithm:

1. Random partition – Randomly assign each data sample a label i ∈ {1, . . . , k},
then start the k-means heuristic at step 2a.

2. Forgy method – Choose k random sample points to be the means of each
of the k clusters, then start the k-means heuristic at step 2b.

3. k-means++ – As an improvement of the Forgy method, choose k random
sample points to be the means of each of the k clusters with a preference
for points that are far apart, then start the k-means heuristic at step 2b.

Machine Learning | S. Pohland

CHAPTER 15. CLUSTERING

The k-means++ initialization method is a bit more involved than the other
two methods, but it works well in theory and practice. For the best results, it
is recommended that you run the k-means clustering algorithm multiple times
with different initializations each time. Figure 15.1 is an example of the steps
in the k-means clustering heuristic for k = 2 using random partitioning.

15.2.3 k-Medoids Clustering
The k-means clustering algorithm uses the Euclidean distance to measure the
distance between sample points. In k-medoids clustering, we do not restrict
ourselves to using the Euclidean distance. Instead, we specify a distance func-
tion, d(x,y), between points, x and y. The distance between two points is also
referred to as the dissimilarity. Some popular choices for the distance function
are the l1 norm and the l∞ norm, but the best choice of distance metric very
much depends on the application. While the mean is optimal for the Euclidean
distance, it is not optimal for other distance metrics. In k-medoids clustering,
we replace the mean with the medoid, which is the sample point in a given
cluster that minimizes the total distance to other points in the same cluster.
In some cases, k-medoids clustering is preferred to k-means clustering because
k-medoids clustering is generally less sensitive to outliers.

15.3 Hierarchical Clustering
Another method to partition data is hierarchical clustering. In hierarchical
clustering, we create a tree and treat every subtree as a cluster such that some
clusters contain smaller clusters. There are two forms of hierarchical clustering:

1. Agglomerative (bottom-up) clustering – Start with each individual
point as its own cluster and repeatedly fuse pairs of clusters with the
greatest linkages. (Cluster linkage is discussed in section 15.3.1).

2. Divisive (top-down) clustering – Start with all of the points in one
large cluster and repeatedly split clusters with low linkages.

15.3.1 Cluster Linkage
To perform either hierarchical clustering method, we need a distance function
that measures the linkage between two clusters. Let A and B be two clusters
of data samples. Some common linkage functions are the following:

1. Complete linkage – `(A,B) = max
{
d(x,y) : x ∈ A, y ∈ B

}
2. Single linkage – `(A,B) = min

{
d(x,y) : x ∈ A, y ∈ B

}
3. Average linkage – `(A,B) = 1

|A||B|
∑
x∈A

∑
y∈B d(x,y)

4. Centroid linkage – `(A,B) = d(µA,µB) for cluster means µA and µB

Machine Learning | S. Pohland

CHAPTER 15. CLUSTERING

For the first three linkage metrics, we can use any distance function, d. For the
centroid linkage metric, the distance function should be the Euclidean distance.
Each linkage function has different advantages and disadvantages. The single
linkage measurement is the most sensitive to outliers and usually gives us the
least balanced tree, so it not popular. The centroid linkage measurement can
cause tree inversions, where a parent cluster is fused at a lower linkage distance
than its children, so it is also unpopular. The complete linkage and average
linkage measurements can both be effective in hierarchical clustering and both
are popular, but complete linkage generally gives the most balanced tree.

15.3.2 Dendrogram
A dendrogram is an illustration of the cluster hierarchy (tree) in which the
vertical axis encodes all of the linkage distances. We can cut the dendrogram
into clusters by choosing a horizontal line according to the desired number of
clusters or the desired inter-cluster linkage distance among clusters. Figure 15.2
provides an example of a dendrogram used to cluster data samples.

Figure 15.2: This is an example of a dendrogram, which is cut
into one, two, or three clusters at various values of the inter-
cluster linkage distance shown on the vertical axis.

15.4 Spectral Clustering
A final clustering method that differs from the k-means and hierarchical cluster-
ing methods is called spectral clustering. In spectral clustering, data samples
are connected by a graph and partitions are chosen by cutting edges connecting
points on that graph. To understand spectral clustering, it is valuable to have a
basic understanding of graph theory. I will first give some background on graph
theory, before giving greater detail on the spectral clustering method.

Machine Learning | S. Pohland

CHAPTER 15. CLUSTERING

15.4.1 Graph Theory
A graph, G = (V,E), is composed of a set of nodes/vertices, V = {1, . . . , n},
and a set of edges, E ⊆ V ×V . If G is a directed graph, then the connections
between nodes have an associated direction. For example, the edge (i, j) would
indicate that there is a connection from node i to node j. If G is an undirected
graph, then there is no direction associated with edges between nodes. For
undirected graphs, E is a set of unordered pairs of nodes, meaning that

(i, j) ∈ E ⇔ (j, i) ∈ E ∀i, j ∈ V.

If G is a weighted graph, then there is some weight associated with each edge
of the graph. We will use wij to denote the weight of edge (i, j), connecting node
i to node j. If the graph is undirected, the weights wij and wji are equal. If G
is unweighted, there is no weight associated with each edge. For unweighted
graphs, we can simply assume that wij is one for each pair (i, j) connected by an
edge. In general, we can also say that wij is zero if there is no edge connecting
node i to node j. We will also assume that there are no self-edges (i.e. wii = 0
for all i ∈ V). The degree of node i, which I will denote di, is the sum of the
edge weights incident at that node, which we can express as

di =
∑

j:(i,j)∈E

wij .

Note that for an unweighted graph, the degree of a node is simply the number of
other nodes connected to that node by an edge in the graph. We will generally
focus our discussion on weighted, undirected graphs.

Laplacian Matrix

The Laplacian matrix, L, is the symmetric n× n matrix defined such that

Lij =

di if i = j

−wij if (i, j) ∈ E
0 otherwise

.

We can see that the Laplacian matrix is necessarily symmetric for an undirected
graph. We can also show that the Laplacian matrix for an undirected graph
is always positive semidefinite. Recall that a matrix, A ∈ Rn×n, is positive
semidefinite if and only if xTAx ≥ 0 for all x ∈ Rn. Therefore, to show that
the Laplacian matrix is positive semidefinite, consider the following product:

xTLx =

n∑
i=1

n∑
j=1

Lijxixj =

n∑
i=1

Liix2i +
∑
j 6=i

Lijxixj

 .

Machine Learning | S. Pohland

CHAPTER 15. CLUSTERING

From the definition of the Laplacian matrix, we can see that

xTLx =

n∑
i=1

dix2i +
∑

j:(i,j)∈E

−wijxixj

=

n∑
i=1

 ∑
j:(i,j)∈E

wijx
2
i +

∑
j:(i,j)∈E

−wijxixj

=

n∑
i=1

∑
j:(i,j)∈E

(
wijx

2
i − wijxixj

)
=

1

2

∑
(i,j)∈E

(
wijx

2
i + wijx

2
j − 2wijxixj

)
=

1

2

∑
(i,j)∈E

wij
(
xi − xj

)2
Assuming that the weights are non-negative, xTLx is the sum of non-negative
elements, so xTLx ≥ 0 for all x ∈ Rn. Therefore, the Laplacian matrix for an
undirected graph with no self-loops is positive semidefinite as claimed.

Eigenvalues of Laplacian

If G is a completely connected graph, then the Laplacian matrix, L, has a single
zero eigenvalue with corresponding eigenvector 1n. To see this, notice that

(L1n)i =

n∑
j=1

Lij = Lii +
∑
j 6=i

Lij =
∑

j:(i,j)∈E

wij +
∑

j:(i,j)∈E

−wij = 0.

Now let’s assume that the graph G has k connected components, C1, . . . , Ck.
Assume that any two vertices in Ci can be connected by a set of edges and that
there is no edge between any vertex in Ci and any vertex in Cj for i 6= j. The
Laplacian matrix, L, has exactly k zero eigenvalues and n− k strictly positive
eigenvalues, meaning that the dimension of its null space is k and its rank is
n−k. The k orthogonal eigenvectors, v(1), . . . ,v(k), in the nullspace of L satisfy

v
(i)
j =

{
1 if j ∈ Ci
0 otherwise

.

To see why these eigenvectors correspond to zero eigenvalues, notice that(
v(l)

)T
Lv(l) =

1

2

∑
(i,j)∈E

wij
(
v
(l)
i − v

(l)
j

)2
= 0.

The equality follows because if there exists an edge (i, j) ∈ E, then i and j are
in the same connected component and are assigned the same values by v(l).
Now suppose that we define the matrix V such that its ith column is the ith
orthogonal eigenvector, v(i), in the nullspace of L. If the ith and jth row of V
are equal, then nodes i and j belong to the same connected component.

Machine Learning | S. Pohland

CHAPTER 15. CLUSTERING

15.4.2 Overview of Spectral Clustering
Now that we covered some background on graphs, I will discuss spectral clus-
tering. The goal of spectral clustering is to cut a graph, G, into two smaller
graphs, G1 and G2, of similar sizes while limiting the amount of edge weight
connecting the vertices between the graphs. We generally want to minimize the
sparsity of the cut, which is also referred to as the cut ratio and is defined as

Cut(G1, G2)

Mass(G1)Mass(G2)
,

where Cut(G1, G2) is the total weight of the edges connecting vertices in G1

to those in G2 and Mass(Gi) is the number of vertices in graph Gi. By min-
imizing this objective, we seek to minimize the numerator and maximize the
denominator. Notice that the value of the denominator is at its maximum when
Mass(G1) = Mass(G2). Therefore, this objective penalizes unbalanced cuts.
Additionally, the numerator is at its minimum when Cut(G1, G2) = 0. There-
fore, this objective penalizes cuts that do not result in well-separated graphs.
While we would ideally like to find the cut with the minimum sparsity, this is a
combinatorial problem, which is NP-hard. Instead, we will discuss methods to
find an approximate solution to the sparsest cut problem.

15.4.3 Algebraic Problem
To find an approximation for the sparsest cut problem, we will turn it into an
algebraic problem. We assume that we are working with a weighted, undirected
graph, G = (V,E), that has no self-edges. We will also assume that the weight
wij = wji is zero if there is no edge connecting vertex i to vertex j.

Maximizing Graph Separation

We will first turn the goal of maximizing graph separation into an algebraic prob-
lem. Recall that to maximize graph separation, we aim to minimize Cut(G1, G2),
which is the sum of the weights of the cut edges. Let n equal the total number
of vertices, |V |, and y ∈ Rn be the indicator vector of labels defined such that

yi =

{
1 if vertex i ∈ G1

−1 if vertex i ∈ G2

.

We want to map the vector y to the total weight of all edges cut. Notice that if
the edge (i, j) is cut, then yi and yj have different signs. If the edge (i, j) is not
cut, then yi and yj have the same sign. From this observation, we can write

wij
(yi − yj)2

4
=

{
wij if edge (i, j) is cut
0 if edge (i, j) is not cut

.

Machine Learning | S. Pohland

CHAPTER 15. CLUSTERING

Previously, we said that Cut(G1, G2) is the sum of the weights of cut edges.
From our observation above, we can express this as

Cut(G1, G2) =
∑

(i,j)∈E

wij
(yi − yj)2

4
=

1

4

∑
(i,j)∈E

wij(yi − yj)2.

From our discussion of the Laplacian, we can recognize the expression above as

Cut(G1, G2) =
1

2
yTLy.

From this expression, we can see that to minimize Cut(G1, G2), we can minimize
the Laplacian quadratic form, yTLy. Therefore, to find the cut that results in
the maximum graph separation, we aim to solve the following problem:

min
y∈Rn

yTLy

s.t. yi ∈ {1,−1}, i = 1, . . . , n

Bisecting Graph

Now we will incorporate the goal of obtaining a balanced cut that results in
subgraphs of similar sizes into our optimization problem. Suppose we want to
bisect the graph G such that there are exactly n/2 vertices in graph G1 and n/2
vertices in graph G2. Based on how we defined y, in order to obtain a cut of
this form, we require that 1Tny = 0. Now to generate a bisection that results in
the maximum graph separation, we aim to solve the following problem:

min
y∈Rn

yTLy

s.t. yi ∈ {1,−1}, i = 1, . . . , n

1Tny = 0

Optimization Problem Relaxation

While we have expressed the problem of minimizing sparsity as an algebraic
problem, the binary constraint on the components of y still makes this problem
NP-hard, which means it cannot be solved in polynomial time. We can make this
problem easier to solve by relaxing the binary constraint to allow for fractional
vertices. We need to replace the binary constraint with a continuous one that
does not allow for yi to be zero. We will choose to constrain y such that it lies
on a hypersphere of radius

√
n. Now we can write this relaxed problem as

min
y∈Rn

yTLy

s.t. yTy = n

1Tny = 0

Machine Learning | S. Pohland

CHAPTER 15. CLUSTERING

Because yTy is a constant equal to n, we can write the objective as

yTLy

yTy
.

To solve this problem, recall that the Laplacian matrix, L, is symmetric and
positive semidefinite. We have just expressed the objective function as the
Rayleigh quotient of L and y. In general, to minimize the Rayleigh quotient,
we take y to be the eigenvector of L corresponding to the smallest eigenvalue
of L. Please see my linear algebra notes to understand why this is the case.

Recall from our discussion of the eigenvalues of the Laplacian matrix that 1n is
an eigenvector of L with the corresponding eigenvalue 0. Because L is a positive
semidefinite matrix, this is the smallest eigenvalue of L. If we choose y = 1n,
then graph G1 will contain all of the vertices and G2 will contain none, which
we do not want. Therefore, instead of choosing the eigenvector corresponding to
the smallest eigenvalue of L, we want to choose the eigenvector corresponding
to the second smallest eigenvalue, which we call the Fielder eigenvector.

Spectral Partitioning Algorithm

We have determined that the optimal choice of y under the relaxed constraint
yTy = n is the Fielder vector of the Laplacian matrix, L. However, we still
need to restrict y such that its components are all 1 or −1. While the simplest
solution may be to take the sign of the vector y, it is generally better to use a
sweep cut. This leads us to the spectral partitioning algorithm:

1. Compute the Fielder vector, v2, of the Laplacian matrix, L.

2. Sort the components of v2 from low to high values.

3. Try all n− 1 cuts between successive components and partition the graph
into subgraphs using the cut that results in the minimum sparsity.

The spectral partitioning algorithm does not require that a graph G is cut into
two graphs, G1 and G2, of the same size, but it generally results in a balanced
cut, giving us a good approximation of the minimum sparsity cut. While the
combinatorial problem is NP-hard, this algorithm can run in polynomial time.

15.4.4 Advantages of Spectral Clustering
Recall from section 15.2 that k-means clustering can only give us linear decision
boundaries. Spectral clustering is not limited to linear decision boundaries.
Figure 15.3 demonstrates a comparison of k-means and spectral clustering.

Machine Learning | S. Pohland

CHAPTER 15. CLUSTERING

Figure 15.3: On the left are two sets of data partitioned by
the k-means clustering method, and on the right are the same
two data sets partitioned using the spectral clustering method.
Notice that spectral clustering is able to learn nonlinear decision
boundaries that cannot be obtained by k-means clustering.

15.4.5 Variations of Spectral Clustering
We discussed a basic version of the spectral clustering problem and an algorithm
to solve the problem. We will also consider some variations of this problem.

Node Masses

In some cases, it may be of value to assign masses to nodes in order to give
more prominence to some nodes over others. Rather than generating subgraphs
with an equal number of nodes, we are now interested in generating subgraphs
with the same total mass. Now instead of constraining y such that it lies on a
hypersphere of radius

√
n, we will constrain y such that it lies on an ellipsoid.

Let M be a diagonal n × n matrix whose ith diagonal element is the mass of

Machine Learning | S. Pohland

CHAPTER 15. CLUSTERING

node i. We can express this new optimization problem as

min
y∈Rn

yTLy

s.t. yTMy =

n∑
i=1

Mii

1TnMy = 0

Now instead of choosing y to be the Fielder vector of L, we will choose y to
be the Fielder vector of the generalized eigensystem Lv = λMv, where λ is
an eigenvalue and v is the corresponding eigenvector. Cheeger’s inequality says
that the sweep cut finds a cut with a sparsity less than or equal to√

2λ2 max
i∈{1,...,n}

Lii
Mii

,

where λ2 is the second smallest eigenvalue of the generalized eigensystem. The
optimal cut has sparsity greater than or equal to λ2/2.

We can use node masses to obtain a normalized cut, in which subgraphs have
a similar number of edges. To generate a normalized cut, we set the mass of
node i to the degree of that node (i.e. Mii = Lii = di). This is a popular choice
for image segmentation to divide an image into different regions that possess
similar properties such as intensity, texture, color etc.

Mutliple Subgraphs

Suppose we want to partition a graph, G, into more than two subgraphs. One
way to do this is to use greedy divisive clustering. First, we cut the graph
into two subgraphs using the spectral partitioning algorithm discussed previ-
ously. Then, we recursively cut the subgraphs into more subgraphs by repeat-
edly computing the Fielder vector and performing a sweep cut. We stop cutting
the graphs once we have the desired number of clusters or until each subgraph is
a single node. If we cut the subgraphs until each contains a single node, we can
obtain a dendrogram, but a dendrogram formed this way may have inversions.

Another option to divide a graph, G, into k subgraphs is to use k eigenvectors,
instead of just the single Fielder vector. Below is a method to form k clusters:

1. Compute the first k eigenvectors, v1,v2, . . . ,vk, of the generalized eigen-
system Lv = λMv. Let the ith column of V ∈ Rn×k be vi ∈ Rn.

2. Scale the eigenvectors such that vTiMvi = 1 for all i, meaning

ṽi =

(
n∑
i=1

Mii

)−1/2
vi.

Machine Learning | S. Pohland

CHAPTER 15. CLUSTERING

3. Let vTj ∈ Rk denote the jth row of V , which we will refer to as the spectral
vector for vertex j. Normalize each row to have a length of one, meaning

ṽj
T =

vTj
||vTj ||2

.

4. Use k-means clustering to cluster the normalized spectral vectors. Because
all of the spectral vectors were normalized to lie on a sphere, k-means
clustering will cluster vectors that are separated by small angles.

Machine Learning | S. Pohland

Part IV

Improving Learning
Techniques

127

Chapter 16

The Kernel Trick

16.1 Kernels
Sometimes it is beneficial to lift a feature set to a higher dimensional space to
improve the performance of a classifier or regression model. Suppose we have
a design matrix X ∈ Rn×d whose ith row is the d-dimensional sample point
xTi . Let φ : Rd → RD be a function, which we call a lifting map, that brings
d-dimensional points into a D-dimensional space. Often, it is computationally
intractable to compute φ(xi) for all n data points. Instead, we use kernels to
work with these features without actually computing them. For some lifting
map, φ, the kernel function, k : Rd × Rd → R, is defined such that

k(xi,xj) = φ(xi)
Tφ(xj).

All valid kernel functions can be expressed in this form. Note that valid kernel
functions are closed under positive linear combinations. From this expression
of a valid kernel, we can also see that a valid kernel must satisfy

k(xi,xi) = φ(xi)
Tφ(xi) = ||φ(xi)||22 ≥ 0.

The kernel matrix, K ∈ Rn×n, is defined such that its ijth element is

Kij = k(xi,xj).

Let φ(X) be an n × D lifted design matrix whose rows are the lifted feature
vectors, φ(xi)

T . Now we can also express the kernel matrix as

K = φ(X)φ(X)T .

Because the kernel matrix is defined as a matrix product, it is always symmetric
and positive semidefinite. Because φ(X) does not necessarily have full row rank,
the kernel matrix is not necessarily positive definite and may not be invertible.

Any function that satisfies the constraints previously mentioned is a valid kernel
function. The two most popular kernel functions by far are the polynomial kernel
and the Gaussian kernel, so we will only focus on these two kernel functions.

128

CHAPTER 16. THE KERNEL TRICK

16.1.1 Polynomial Kernel
For a data sample, xi, the polynomial feature vector, φ(xi), contains every
monomial in xi up to some degree, p. For example, if we have d = 2 features
and want to use a polynomial of degree p = 2, the polynomial feature vector is

φ(xi) =
[
x2i1 x2i2 xi1xi2 xi1 xi2 1

]T
.

For a data sample with d features, a degree p polynomial feature vector contains
O(dp) features, which is computationally intractable for typical values of d and
p. Because we are generally unable to work with the polynomial feature vectors
directly, we must work with the kernel function. If φ is a polynomial feature
mapping of degree p, then the polynomial kernel can be expressed as

k(xi,xj) = (xTi xj + 1)p.

To better understand why this is true, let’s again consider the case where we
have d = 2 features and want to use a polynomial of degree p = 2. For this case,

(xTi xj + 1)2 =

([
xi1 xi2

] [xj1
xj2

]
+ 1

)2

= (xi1xj1 + xi2xj2 + 1)
2

= x2i1x
2
j1 + x2i2x

2
j2 + 2xi1xj1xi2xj2 + 2xi1xj1 + 2xi2xj2 + 1

=
[
x2i1 x2i2

√
2 xi1xi2

√
2 xi1

√
2 xi2 1

]
·[

x2j1 x2j2
√

2 xj1xj2
√

2 xj1
√

2 xj2 1
]

Notice that these two vectors are the same as the polynomial feature vectors,
φ(xi)

T and φ(xj)
T , except that there are constant terms included, which will

not affect classification or regression problems. The polynomial kernel is bene-
ficial because we can compute k(xi,xj) in O(d) time, instead of O(dp) time.

16.1.2 Gaussian Kernel
The Gaussian kernel, or the radial basis function (RBF) kernel, is

k(xi,xj) = exp

(
−||xi − xj ||

2
2

2σ2

)
,

where σ is a hyperparameter that balances the bias-variance trade-off and should
be chosen via validation. For larger values of σ, the Gaussian PDF is wider and
the kernel function is smoother, resulting in more bias and less variance. For
smaller values of σ, the Gaussian PDF is narrower and the kernel function is
less smooth, resulting in less bias and more variance.

Machine Learning | S. Pohland

CHAPTER 16. THE KERNEL TRICK

To see that the Gaussian kernel is a valid kernel function, we will consider the
case when we only have d = 1 feature. For this case, notice that

k(xi, xj) = exp

(
−|xi − xj |

2

2σ2

)
= exp

(
− x2i

2σ2
−

x2j
2σ2

+
xixj
σ2

)

= exp

(
− x2i

2σ2

)
exp

(
−
x2j
2σ2

)
exp

(xixj
σ2

)
Using the Taylor series expansion for the exponential function,

k(xi, xj) = exp

(
− x2i

2σ2

)
exp

(
−
x2j
2σ2

)(
1 +

xixj
σ2 · 1!

+
x2ix

2
j

σ4 · 2!
+

x3ix
3
j

σ6 · 3!
+ . . .

)

= exp

(
− x2i

2σ2

)[
1 xi

σ
√
1!

x2
i

σ2
√
2!

x3
i

σ3
√
3!

. . .
]
·

exp

(
−
x2j
2σ2

)[
1

xj

σ
√
1!

x2
j

σ2
√
2!

x3
j

σ3
√
3!

. . .
]

Now we can see that, for the case where we have only one feature, the Gaussian
lifting map lifts a sample point, xi, to an infinite dimensional space such that

φ(xi) = exp

(
− x2i

2σ2

)[
1 xi

σ
√
1!

x2
i

σ2
√
2!

x3
i

σ3
√
3!

. . .
]T
.

While the Gaussian kernel is very popular, the Gaussian lifting map is quite
complicated and is rarely used directly. Like the polynomial kernel, the Gaussian
kernel it takes O(d) time to compute, which is computationally tractable.

The Gaussian kernel is very popular because it admits the following advantages:

1. The Gaussian kernel allows us to learn a decision function that is defined
by a linear combination of Gaussians centered at the sample points.

2. Hypotheses computed using the Gaussian kernel are smooth. If the hy-
pothesis is a linear combination of Gaussians, then it is C∞ continuous.

3. The Gaussian kernel can be interpreted as a similarity measure for sample
points that is maximum when two points are equal and approaches zero
as the distance between the points increases.

4. Hypotheses using the Gaussian kernel behave similar to k-nearest neigh-
bors but give smooth boundaries. Sample points "vote" for the label of a
test point but points closer to the test point have greater weight.

5. Hypotheses computed with the Gaussian kernel oscillate less than those
computed with the polynomial kernel, assuming the variance of the Gaus-
sians is sufficiently large. Wide Gaussians with relatively large values of
σ have small gradients, which prevents them from oscillating too much.

Machine Learning | S. Pohland

CHAPTER 16. THE KERNEL TRICK

16.2 Kernelization
Kernelization, or the kernel trick, is a generalized version of featurization
that greatly improves computational efficiency. The kernel trick can be used
with any learning method that allows us to express learned weights as a linear
combination of input samples. It cannot be used with methods like decision
trees and k-nearest neighbors that do not find an optimal set of weights.

Suppose we have some learning algorithm that uses a design matrix, X ∈ Rn×d,
the corresponding label vector, y ∈ Rn, and a weight vector, w ∈ Rd. For this
learning algorithm, we define an optimization problem, which we refer to as the
primal problem, to find the optimal primal weights, ŵ. Once we have found the
optimal weight vector, to then predict the label of a test point, z, we compute

h(z) = ŵTz.

To use the kernel trick for this learning method, we will first define a dual
problem. Define the dual weight vector, a ∈ Rn, such that w = XTa. Begin
by replacing all instances of w in the primal objective function with the term
XTa. Then rearrange the dual objective so that it is written only in terms of
the dual weights, a, the inner product between training points, XXT or xTi xj ,
and the original labels, y. The solution of the dual problem is the optimal dual
weights, â. To then predict the label of a test point, z, we compute

h(z) = âTXz =

n∑
i=1

âix
T
i z.

Now suppose we want to use the lifted feature vectors. In the dual problem, we
can replace instances of XXT with the kernel matrix, K = φ(X)φ(X)T , and
instances of xTi xj with the kernel function, k(xi,xj) = φ(xi)

Tφ(xj). Now, to
classify a test point, z, we can compute the following weighted sum:

h(z) =

n∑
i=1

âiφ(xi)
Tφ(z) =

n∑
i=1

âik(xi, z).

Kernalization should become more clear as we apply it to specific learning meth-
ods. I will show how to use the kernel trick for ridge regression, perceptrons,
logistic regression, and k-means clustering. After seeing how the kernel trick
is applied to these problems, you should be able to apply it to other problems
as well. The kernel trick is very commonly used with support vector machines
(SVMs). However, the dual form of the SVM algorithm is complex and will not
be covered in these notes. While I will not go over kernel SVMs, it is good to
know that many off-the-shelf SVM packages enable the use of kernel functions.

16.3 Kernel Ridge Regression
Let X be the n × d matrix whose ith row is the transpose of the ith sample
point, xi, augmented with one, and let y be the n-dimensional vector whose

Machine Learning | S. Pohland

CHAPTER 16. THE KERNEL TRICK

ith element is the label corresponding to xi. Let w ∈ Rd be the weight vector,
whose last element is the bias term, and let w′ be the weight vector without
the bias term. Recall from section 10.2 that the ridge regression problem is

min
w∈Rd

||Xw − y||22 + λ||w′||22,

where λ is the regularization parameter. In order to use the kernel trick, we
have to penalize the bias term, resulting in the following optimization problem:

min
w∈Rd

||Xw − y||22 + λ||w||22.

To make it less harmful to penalize the bias, it is recommended that we first
centerX and y so that their means are both zero. With this slight modification
to the original ridge regression problem, the optimal solution, ŵ, satisfies

(XTX + λId)ŵ = XTy.

After obtaining the optimal solution, we classify a test point, z, such that

h(z) = ŵTz.

16.3.1 Dual Form of Ridge Regression
Replacing all instances ofw in the original ridge regression optimization problem
with XTa, we obtain the dual form of the ridge regression problem:

min
a∈Rn

||XXTa− y||22 + λ||XTa||22.

Taking the gradient of this objective function with respect to the dual weights,
we find that the optimal solution to the dual problem, â, satisfies

(XXT + λIn)â = y.

Note that if â satisfies this equation, then we can write

XTy = XT (XXT + λIn)â = (XTXXT + λXT)â = (XTX + λId)XT â.

Therefore, ŵ = XT â is a solution to the normal equation for ridge regres-
sion and is a linear combination of sample points. After obtaining the optimal
solution, â, we can predict the label of a test point, z, by computing

h(z) = âTXz =

n∑
i=1

âix
T
i z.

Machine Learning | S. Pohland

CHAPTER 16. THE KERNEL TRICK

16.3.2 Kernel Trick for Ridge Regression
If we instead want to use the feature vectors obtained by a lifting map, φ, then
we would now need to find the optimal solution, â, that solves(

φ(X)φ(X)T + λIn
)
â = y.

With this lifting map, our prediction would then become

h(z) =

n∑
i=1

âiφ(xi)
Tφ(z).

Recall that we generally do not want to evaluate the lifting map directly. We
will instead use the kernel function k(xi, z) = φ(xi)

Tφ(z) and the kernel matrix
K = φ(X)φ(X)T . Now we want to find the optimal solution, â, that solves

(K + λIn)â = y.

The prediction for a test point, z, then becomes

h(z) =

n∑
i=1

âik(xi, z).

Note that for training, we need to compute the kernel matrix, which takes
O(n2d) time, then solve a linear equation, which takes O(n3) time. Therefore,
the total time for training is O(n3 + n2d). To predict the label of a test point,
it takes O(nd) time. If we had instead used the primal ridge regression problem
for training, the total time for training would be O(d3 + d2n). Therefore, we
prefer dual ridge regression when the number of features exceeds the number of
sample points (i.e. d > n). If we are lifting features into a higher dimensional
space (using a polynomial or Gaussian lifting map), then we generally have a lot
of features and it is faster to use dual ridge regression. Note that the dual and
primal ridge regression problems give us the same predictions. The difference
between these two problems is the run time.

16.4 Kernel Perceptrons
Consider a data set of n d-dimensional sample points, x1, . . . ,xn, with corre-
sponding labels, y1, . . . , yn. Recall from section 3.3 that the perceptron training
algorithm with stochastic gradient descent is given by algorithm 6. After run-
ning this algorithm, a test point, z, is then classified such that

h(z) = wTz.

Machine Learning | S. Pohland

CHAPTER 16. THE KERNEL TRICK

Algorithm 6: Primal Form of Perceptron Algorithm
1 w ← arbitrary non-zero starting point
2 η ← desired step size (learning rate)
3 while yi(wTxi) < 0 for some i do
4 w ← w + ηyixi
5 end
6 return w

16.4.1 Dual Form of Perceptron
To obtain the dual form of the perceptron algorithm, we will change both the
update condition (line 3 in algorithm 6) and the update rule (line 4). Let
X ∈ Rn×d be the design matrix whose ith row is the ith sample point, xi ∈ Rd,
and define the vector a ∈ Rn such that w = XTa. From this definition, we can
write the expression on the left hand side of the update condition as

yiw
Txi = yi(Xw)i = yi(XX

Ta)i.

Now using the definition a, we can express the update rule as

XTa←XTa+ ηyixi.

Notice that we can equivalently express this update rule as
n∑
j=1

ajxj ←
n∑
j=1

ajxj + ηyixi.

Focusing on just one data sample at a time, we can perform the following update:

aixi ← aixi + ηyixi.

This update rule can be expressed a bit more simply as

ai ← ai + ηyi.

Now we can write the dual form of the perceptron algorithm as in algorithm 7.

Algorithm 7: Dual Form of Perceptron Algorithm
1 a← arbitrary non-zero starting point
2 η ← desired step size (learning rate)
3 while yi(XXTa)i < 0 for some i do
4 ai ← ai + ηyi
5 end
6 return a

After running this algorithm, a test point, z, is then classified such that

h(z) = aTXz =

n∑
i=1

aix
T
i z.

Machine Learning | S. Pohland

CHAPTER 16. THE KERNEL TRICK

16.4.2 Kernel Trick for Perceptrons
Now suppose that instead of using the original sample points, we want to use
the feature vectors obtained by some lifting map, φ. Using the feature vectors
would not change the update rule for the dual form of the perceptron algorithm,
but we need to change the update condition. We would now check the condition

yi(φ(X)φ(X)Ta)i < 0.

Recall that it is generally more computationally efficient to work with the kernel
matrix, K. Therefore, we should instead express this update condition as

yi(Ka)i < 0.

Now we can express the perecptron algorithm using kernels as in algorithm 8.

Algorithm 8: Kernel Perceptron Algorithm
1 a← arbitrary non-zero starting point
2 η ← desired step size (learning rate)
3 while yi(Ka)i < 0 for some i do
4 ai ← ai + ηyi
5 end
6 return a

After running this algorithm, a test point, z, is then classified such that

h(z) =

n∑
i=1

aiφ(xi)
Tφ(z) =

n∑
i=1

aik(xi, z).

Note that for training, we need to compute the kernel matrix, which takes
O(n2d) time, then update each component of a and compute Ka, which takes
O(n) time. To predict the label of a test point, it takes O(nd) time. If we did
not use the kernel trick, then we could have computed w = φ(X)Ta once in
O(nD) time and evaluated test points in O(D) time. If the number of training
points and test points exceed D/d, then using the kernel trick is faster.

16.5 Kernel Logisitic Regression
Let X be the n × d matrix whose ith row is the transpose of the ith sample
point, xi, augmented with one, and let y be the n-dimensional vector whose
ith element is the label corresponding to xi. Let w ∈ Rd be the weight vector,
whose last element is the bias term. Recall from section 9.5 that the batch
gradient descent update rule for logistic regression can be expressed as

w ← w + ηXT
(
y − s(Xw)

)
,

Machine Learning | S. Pohland

CHAPTER 16. THE KERNEL TRICK

where the logisitc function, s, is applied component-wise. Similarly, the stochas-
tic gradient descent update law for logistic regression is given by

w ← w + η
(
yi − s(wT x̃i)

)
x̃i,

where x̃i represents the ith data sample augmented with one. After the gradient
descent algorithm terminates, a test point, z, is then classified such that

h(z) = s(wTz).

16.5.1 Dual Form of Logistic Regression
As we did previously, define a ∈ Rn such that w = XTa. With this definition,
we can express the batch gradient descent update rule for logistic regression as

XTa←XTa+ ηXT
(
y − s(XXTa)

)
.

We can equivalently express the dual form of the update rule as

a← a+ η
(
y − s(XXTa)

)
.

Similarly, we can express the stochastic gradient descent update rule as

ai ← ai + η(yi − s(XXTa)i).

Once these algorithms terminate, we can classify a test point, z, such that

h(z) = s
(
aTXz

)
= s

(
n∑
i=1

a1x
T
1 z

)
.

16.5.2 Kernel Trick for Logisitc Regression
Now suppose that instead of using the original sample points, we want to use
the feature vectors obtained by some lifting map, φ. The dual form of the batch
gradient descent update rule for logistic regression now becomes

a← a+ η
(
y − s(φ(X)φ(X)Ta)

)
.

Using the kernel trick with the kernel matrix K, this update rule become

a← a+ η
(
y − s(Ka)

)
.

Similarly, the dual form of the stochastic gradient descent update rule is now

ai ← ai + η(yi − s(φ(X)φ(X)Ta)i).

Using the kernel trick with the kernel matrix K, this update rule become

ai ← ai + η(yi − s(Ka)i).

Using the lifted feature vectors, we would classify the test point z such that

h(z) = s

(
n∑
i=1

aiφ(xi)
Tφ(z)

)
= s

(
n∑
i=1

aik(xi, z)

)

Machine Learning | S. Pohland

CHAPTER 16. THE KERNEL TRICK

16.6 Kernel k-Means Clustering
Recall from section 15.2 that the goal of k-means clustering is to partition a set
of n d-dimensional data points, x1, . . . ,xn, into k disjoint clusters, S1, . . . , Sk.
In the k-means clustering heuristic, we alternate between computing the mean
of each cluster and assigning data samples to a cluster. If xj is assigned to
cluster Si, it is given the label yj = i. The mean of cluster i is then given by

µi =
1

|Si|
∑
l:yl=i

xl.

We assign a data sample, xj , to the cluster, Si, whose mean is closest to the
data sample. We can express this step as the following optimization problem:

ŷj = arg min
i∈{1,...,k}

||xj − µi||22.

16.6.1 Dual Form of k-Means Clustering
To determine the dual form of the the k-means clustering optimization problem,
we will first expand the objective function in the original problem. Notice that

||xj − µi||22 =
(
xj − µi

)T (
xj − µi

)
= xTj xj − 2µTi xj + µTi µi.

Plugging in our expression for the mean of the ith cluster, we have

||xj − µi||22 = xTj xj − 2

(
1

|Si|
∑
l:yl=i

xl

)T
xj +

(
1

|Si|
∑
l:yl=i

xl

)T(
1

|Si|
∑
l:yl=i

xl

)

= xTj xj −
2

|Si|
∑
l:yl=i

xTl xj +
1

|Si|2
∑
l:yl=i

∑
m:ym=i

xTl xm.

Now we are left with the following optimization problem:

ŷj = arg min
i∈{1,...,k}

xTj xj − 2

|Si|
∑
l:yl=i

xTl xj +
1

|Si|2
∑
l:yl=i

∑
m:ym=i

xTl xm

 .

16.6.2 Kernel Trick for k-Means Clustering
Now suppose that instead of using the original sample points, we want to use
the feature vectors obtained by some lifting map, φ. Now the dual form of the
optimization problem defined for k-means clustering is given by

ŷj = arg min
i∈{1,...,k}

φ(xj)
Tφ(xj)−

2

|Si|
∑
l:yl=i

φ(xl)
Tφ(xj) +

1

|Si|2
∑
l:yl=i

∑
m:ym=i

φ(xl)
Tφ(xm)

 .

Machine Learning | S. Pohland

CHAPTER 16. THE KERNEL TRICK

Using the kernel function, k, we can equivalently express this problem as

ŷj = arg min
i∈{1,...,k}

k(xj ,xj)−
2

|Si|
∑
l:yl=i

k(xl,xj) +
1

|Si|2
∑
l:yl=i

∑
m:ym=i

k(xl,xm)

 .

We can remove the first term from the objective function because it does not
depend on the optimization variable, i, leaving us with the equivalent problem:

ŷj = arg min
i∈{1,...,k}

− 2

|Si|
∑
l:yl=i

k(xl,xj) +
1

|Si|2
∑
l:yl=i

∑
m:ym=i

k(xl,xm)

 .

Recall that we must assign all n data samples to a cluster based on the nearest
mean. Therefore, we compute a solution to this optimization problem for each
j ∈ {1, . . . , n}. Notice that the last term in the objective does not depend on
j but is computed for every j ∈ {1, . . . , n}. Before entering the loop where we
assign labels to data points, we should compute and store the following:

αi :=
1

|Si|2
∑
l:yl=i

∑
m:ym=i

k(xl,xm), i = 1, . . . , k.

When assigning data points to clusters, we can now solve the problem

ŷj = arg min
i∈{1,...,k}

− 2

|Si|
∑
l:yl=i

k(xl,xj) + αi

 .

Machine Learning | S. Pohland

Chapter 17

Ensembling & Adapative
Boosting

17.1 Ensemble Learning
One way to improve the performance of learning algorithms is by ensemble
learning, which we also refer to as averaging. Ensemble learning works by
combining the predictions from various machine learning models. For regression
problems, we form a prediction by taking the median or mean of the outputs
for various models. For classification problems, we assign a label by taking the
majority vote of the outputs or by looking at the average posterior probabilities.

We can take the average of the outputs of models obtained from different types
of learning algorithms, or we can use the same learning algorithm on different
training sets. Often, we do not have enough data to use many training sets. If
this is the case, we can instead use random subsamples of a single training set.
This is referred to as bagging and is more common than the first two options.

17.1.1 Bias & Variance with Ensembling
Ensemble learning, or averaging, can be used for many different learning algo-
rithms, but it works particularly well with decision trees. The reason ensemble
learning typically works well with decision trees is because decision trees can be
designed to have high variance and low bias. Averaging reduces the variance,
but it does not reduce the bias in general. To see why this is true, consider
the set {Zi}ni=1 of correlated random variables with mean µ, variance σ2, and
correlation coefficient ρ for all i 6= j. The average of this set is given by

Z̄ =
1

n

n∑
i=1

Zi.

Consider an arbitrary test point, z, in the feature space whose true label is

139

CHAPTER 17. ENSEMBLING & ADAPATIVE BOOSTING

given by γ = g(z) + ε, where g is a deterministic function and ε is zero-mean
random noise. Recall from section 9.2.3 that the bias is the expected difference
between the hypothesis, h(z), and the true label, γ. Suppose that Z̄ is used as
the prediction for the test point. The bias for this type of classifier is then

bias = E[h(z)]− g(z) = E[Z̄]− g(z) = µ− g(z).

The variance for a classifier that predicts the label of z to be Z̄ is

variance = Var(h(z)) = Var(Z̄) =
1 + (n− 1)ρ

n
σ2.

To better understand where the bias and variance equations come from, please
review my notes on probability and random processes, particularly the section
on the sample mean. From these equations, we can see that averaging (i.e.
increasing the value of n) reduces the variance but does not reduce the bias.
Because averaging reduces variance but not bias, when doing ensemble learning,
we should use learners with low bias (e.g. deep decision trees) that may have
high variance. Note that the hyperparamters used for ensemble learning are
usually different than those used for a single learner because we should choose
the hyperparameters such that the learners have higher variance and lower bias.

17.2 Bagging
Boostrap aggregating, which we refer to as bagging, is one form of ensemble
learning. Given a training sample with n sample points, we generate T random
subsamples of size n′ by sampling with replacement. Since we are sampling with
replacement, some points are chosen multiple times and some are not chosen at
all. Duplicate points are assigned proportionally greater weight in cost function
calculations. After choosing T random subsamples, we build a learner using each
subsample. The metalearner takes a test point, feeds it into all T learners, then
returns the average output. Recall that for regression problems, the average
is either the median or mean of the output for each learner. For classification
problems, the average is the majority vote or the average posterior probabilities.

17.3 Random Forests
As mentioned previously, ensemble learning is very popular for decision trees.
When using ensembling for decision trees, sometimes using random subsamples
of the training data does not introduce enough randomness to reduce variance
significantly. It is common that we have a few really strong predictive features
that tend to dominate in all random subsamples of the training data. When this
is the case, almost all of the decision trees may have very similar early splits.
If this happens, then all of the trees may end up looking very similar and the
the learners’ outputs may be too correlated, so averaging will not significantly
reduce variance. To address this issue, we can use random forests.

Machine Learning | S. Pohland

CHAPTER 17. ENSEMBLING & ADAPATIVE BOOSTING

17.3.1 Feature Subset Selection
The difference between random forests and bagging with decision trees is that
random forests do not allow all of the decision trees to split at the same few
dominant features. At each tree node, we take a random sample of m features
from the set of d features. Then, we choose the best split from among those m
features. Note that we choose a different random sample of features for each tree
node. In practice, m ≈

√
d works well for classification problems and m ≈ d/3

works well for regression problems. However, m is a hyperparameter, which
should ultimately be chosen via validation. As another note, smaller values of
m generally lead to more randomness, less tree correlation, and higher bias.

17.3.2 Number of Decision Trees
The number of decision trees, T , is another hyperparameter. While increasing
the number of decision trees typically improves accuracy, it also increases com-
putation time and results in less model interpretability. Depending on the size
and nature of the training set, we may use a few dozen to several thousand de-
cision trees. We could start by determining the validation accuracy of the base
model without using bagging. Then we should try generating a model using
bagging with only a few decision trees. If the validation accuracy of the model
is sufficiently higher than the validation accuracy of the base model, then we
may only need to use a few decision trees for bagging. If there is not a sufficient
improvement in validation accuracy, then we should try to increase the number
of decision trees until the validation accuracy is sufficiently above that of the
base model. If the computation time becomes too high while increasing the
number of decision trees, we may need to find ways to speed up training or use
fewer decision trees. To choose the hyperparameter T , we must find a balance
between validation accuracy and computation time.

17.3.3 Algorithms & Running Times
Consider an n× d design matrix that contains n sample points with d features
each. Suppose we want to construct a random forest with bagging and random
subset selection. At each tree node, we take a random sample ofm features from
the set of d features. Consider choosing a split at a tree node that contains n′
sample points. We can choose the best split for these n′ sample points in O(n′m)
time. Therefore, the running time per sample point in that node is O(m). Each
of the n sample points participates in at most O(h) nodes, where h is the depth
of the decision tree. Therefore, the total running time for one tree is no greater
than O(nmh). We are working with T decision trees, so the total running time
to train a random forest is O(Tnmh). To classify a test point in a single tree,
we move down the tree until we reach a leaf node, then we return the label of
that leaf node. The worst case time is O(h), where h is the depth of the decision
tree. We are working with T decision trees, so the total query time is O(Th).

Machine Learning | S. Pohland

CHAPTER 17. ENSEMBLING & ADAPATIVE BOOSTING

17.4 AdaBoost
Adaptive boosting, which is commonly referred to as AdaBoost, is a very
successful ensemble method used primarily for classification problems. The
AdaBoost method takes in an n × d design matrix, X, and an n-dimensional
vector of labels y, where we assume yi ∈ {−1, 1} for i = 1, . . . , n. The learning
method trains T classifiers, G1, . . . , GT in sequence on weighted sample points.

Each classifier uses a different set of weights. The weight used for sample point
xi by the classifier Gt depends of the number of classifiers among G1, . . . , Gt−1
that misclassified it. The weight of a sample point xi is increased before being
used by classifier Gt if the previous classifier, Gt−1, misclassified it, and the
weight is decreased if the previous classifier labeled it correctly. By assigning
a greater weight to points that were previously misclassified, classifier Gt is
expected to try harder to correctly classify those points.

17.4.1 Metalearner
In addition to the T classifiers, there is a metalearner that outputs a linear
combination of the outputs of the T classifiers. For a test point, z, I will denote
the output of classifier Gt as Gt(z). Based on the training accuracy of classifier
Gt, it is assigned a weight βt. More accurate classifiers are assigned higher
weights so that they have a greater vote in the final prediction. The output of
the metalearner, M , for the test point, z, is then given by

M(z) =

T∑
t=1

βtGt(z).

We will assume that the output of each of the classifiers satisfies Gt(z) ∈ {−1, 1}
for t = 1, . . . , T . However, the output of the metalearner, M(z), is continuous.
To classify the test point, z, we generally return the sign of M(z).

17.4.2 AdaBoost Optimization Problem
Suppose we have already trained the classifiers G1, . . . , GT−1 and have chosen
the associated weights β1, . . . , βT−1. Now we want to train the classifier GT and
choose the associated weight βT that minimizes the total risk of the metalearner.
For some loss function, L(ρ, `), where ρ is a predicted label and ` is a true label,
we define the total risk associated with the metalearner as the mean loss:

Risk =
1

n

n∑
i=1

L
(
M(xi), yi

)
.

Machine Learning | S. Pohland

CHAPTER 17. ENSEMBLING & ADAPATIVE BOOSTING

Therefore, we choose GT and βT that solve the following optimization problem:

min
GT ,βT

n∑
i=1

L
(
M(xi), yi

)
s.t. M(xi) =

T∑
t=1

βtGt(xi), i = 1, . . . , n

Note that the constant factor 1
n was removed because it does not change the

optimal solution. The choice of loss function is crucial to the design of the
AdaBoost learning method. We will assume that the AdaBosst metalearner
uses the exponential loss function, which is defined such that

L(ρ, `) = e−ρ` =

{
e−ρ if l = 1

eρ if l = −1
.

Using the exponential loss function, we can express the objective function as

n∑
i=1

L
(
M(xi), yi

)
=

n∑
i=1

exp
(
−yiM(xi)

)
=

n∑
i=1

exp

(
−yi

T∑
t=1

βtGt(xi)

)

=

n∑
i=1

exp

(
T∑
t=1

−yiβtGt(xi)

)
=

n∑
i=1

T∏
t=1

exp
(
−yiβtGt(xi)

)
.

Since G1(xi), . . . , GT−1(xi) and β1, . . . , βT−1 are known values for i = 1, . . . , n,
we will simply the expression above by defining the following constants:

w
(T)
i :=

T−1∏
t=1

exp
(
−yiβtGt(xi)

)
, i = 1, . . . , n.

This now allows us to express the objective of our optimization problem as

n∑
i=1

L
(
M(xi), yi

)
=

n∑
i=1

w
(T)
i exp

(
−yiβTGT (xi)

)
.

Recall that the true labels, y1, . . . , yn, as well as the predictions, G1(xi), . . . , GT−1(xi),
either take on the value one or negative one. Therefore, the product of the true
label and the prediction for a sample point, xi, is given by

yiGT (xi) =

{
1 if yi = GT (xi)

−1 if yi 6= GT (xi)
.

Machine Learning | S. Pohland

CHAPTER 17. ENSEMBLING & ADAPATIVE BOOSTING

With this observation, we can separate the objective function into two sums:
n∑
i=1

L
(
M(xi), yi

)
=

∑
i:yi=GT (xi)

w
(T)
i exp

(
−yiβTGT (xi)

)
+

∑
i:yi 6=GT (xi)

w
(T)
i exp

(
−yiβTGT (xi)

)
=

∑
i:yi=GT (xi)

w
(T)
i exp

(
−βT (1)

)
+

∑
i:yi 6=GT (xi)

w
(T)
i exp

(
−βT (−1)

)
= e−βT

∑
i:yi=GT (xi)

w
(T)
i + eβT

∑
i:yi 6=GT (xi)

w
(T)
i

We can simplify the objective by adding an expression of zero to it. Notice that
n∑
i=1

L
(
M(xi), yi

)
= e−βT

∑
i:yi=GT (xi)

w
(T)
i + eβT

∑
i:yi 6=GT (xi)

w
(T)
i

+
(
e−βT − e−βT

) ∑
i:yi 6=GT (xi)

w
(T)
i

= e−βT

 ∑
i:yi=GT (xi)

w
(T)
i +

∑
i:yi 6=GT (xi)

w
(T)
i

+
(
eβT − e−βT

) ∑
i:yi 6=GT (xi)

w
(T)
i

= e−βT

n∑
i=1

w
(T)
i +

(
eβT − e−βT

) ∑
i:yi 6=GT (xi)

w
(T)
i .

17.4.3 Optimal Classifier Prediction
The first term in the objective function does not depend on the choose of clas-
sifier, GT , and the second term contains a constant factor which also does not
depend on GT . Now we can see that the best T th classifier, which minimizes
the total risk, solves the following optimization problem:

min
GT

∑
i:yi 6=GT (xi)

w
(T)
i .

This says that the optimal choice for classifier GT minimizes the sum of the
weights over all misclassified points. The weight function, w(T)

i , is a bit compli-
cated, but we can compute it recursively by noticing the following:

w
(T+1)
i = w

(T)
i exp

(
−yiβTGT (xi)

)
=

{
w

(T)
i e−βT if yi = GT (xi)

w
(T)
i eβT if yi 6= GT (xi)

.

Machine Learning | S. Pohland

CHAPTER 17. ENSEMBLING & ADAPATIVE BOOSTING

This recursive formulation is a benefit of choosing the exponential loss for the
metalearner. Notice that the weight for a sample point, xi, shrinks if the point
was classified correctly by classifier GT and grows if the point was misclassified.

17.4.4 Optimal Classifier Weight
Now to choose the optimal weight, βT , we can take the derivative of the objective
function with respect to βT and set it equal to zero, which gives us

−βe−βT

n∑
i=1

w
(T)
i +

(
βeβT + βe−βT

) ∑
i:yi 6=GT (xi)

w
(T)
i = 0.

Dividing both sides by the first term in the expression above, we get

1 +
(
−e2βT − 1

)∑
i:yi 6=GT (xi)

w
(T)
i∑n

i=1 w
(T)
i

= 0.

To simply the notation, we’ll define the weighted error rate for classifier GT as

errT =

∑
i:yi 6=GT (xi)

w
(T)
i∑n

i=1 w
(T)
i

.

This now allows us to write our previous expression more simply as

1−
(
e2βT + 1

)
errT = 0.

Now we can express the optimal weight βT in terms of the error rate as

βT =
1

2
ln

(
1− errT
errT

)
.

Note that the learner weight, βT , is monotonically decreasing with respect to
the error rate, errT , and is anti-symmetric about 1/2. If classifier GT is a
perfect classifier whose error rate is zero, then it receives the weight βT = ∞.
If classifier GT is equivalent to a random classifier whose error rate is 1/2, then
it receives the weight βT = 0. It intuitively makes sense that a more accurate
classifier receives more weight in determining the output of the metalearner.
Interestingly, a classifier with a training accuracy of 40% is just as useful as
a classifier with a training accuracy of 60% because a classifier with training
accuracy under 50% receives a negative weight.

17.4.5 Adaboost Algorithm
Now that we have an expression for the optimal classifier, GT , and corresponding
coefficient, βT , given previous classifiers and weights, we can put together a
complete AdaBoost training algorithm, which is shown in algorithm 9.
After completing training, we can classify a test point, z, by computing

h(z) = sign(M(z)) = sign

(
T∑
t=1

βtGt(z)

)
.

Machine Learning | S. Pohland

CHAPTER 17. ENSEMBLING & ADAPATIVE BOOSTING

Algorithm 9: AdaBoost Algorithm
1 Initialize weights: wi ← 1

n , i = 1, . . . , n
2 for t← 1 to T do
3 Train classifier Gt with weights w1, . . . , wn

4 Compute weighted error rate: err←
∑

i:yi 6=Gt(xi)
wi∑n

i=1 wi

5 Compute the coefficient: βt ← 1
2 ln

(
1−err
err

)
6 Update the weights: wi ←

{
wie
−βt if yi = Gt(xi)

wie
βt if yi 6= Gt(xi)

7 end
8 return Gt, βt for t = 1, . . . , T

17.4.6 Important Notes
Below are some more important notes about AdaBoost:

1. While AdaBoost can be used with any classifier, classifiers that use linear
decision boundaries do not work well with the Adaboost algorithm.

2. The exponential loss function is sensitive to outliers, so we should use
another loss function if the data has been corrupted.

3. If each individual classifier achieves a training accuracy above a threshold,
µ > 50%, then the training accuracy of the metalearner will eventually
reach 100% with enough classifiers. More specifically, we can prove that
if errt < 0.5 for every learner, the number of samples misclassified by the
metalearner goes to zero as the number of classifiers, T , goes to infinity.

17.4.7 Short Decision Trees
The AdaBoost method can be used with any classifier, but it is most commonly
used with short decision trees for the following reasons:

1. AdaBosst trains several classifiers, and decision trees are fast to train,
especially if they are short.

2. AdaBoost with decision trees can obtain a good classifier without searching
for hyperparamaters.

3. It is easy to design a decision tree that consistently surpasses some mini-
mum training accuracy threshold that is slightly above 50%.

4. AdaBoost with decision trees gives us a good amount of control over the
amount of bias and variance. As you train more learners, the AdaBoost
bias generally decreases and the variance often decreases at first but later
increases. In some cases, boosting can lead to overfitting after many iter-
ations, but using short decision trees helps reduce overfitting.

Machine Learning | S. Pohland

CHAPTER 17. ENSEMBLING & ADAPATIVE BOOSTING

5. AdaBoost with short decision trees is a form of feature subset selection.
When we use AdaBoost with decision trees, we assign a coefficient with
greater magnitude to decision trees with more predictive power and a
coefficient closer to zero to decision trees with a training accuracy closer
to 50%. Short decision trees split on only a few features for some threshold
values. Therefore, if a short decision tree uses features with little predictive
power, then we expect its classification ability to be close to random,
resulting in a coefficient close to zero. These features with little predictive
power will then not be used by the metalearner for classification. This
helps to reduce overfitting and running time.

Machine Learning | S. Pohland

	I Overview of Machine Learning Methods
	Introduction to Machine Learning
	Machine Learning Abstractions
	Data & Application
	Model
	Optimization Problem
	Optimization Algorithm

	II Supervised Learning Techniques
	Introduction to Supervised Learning Techniques
	Overview of Supervised Learning
	Classification & Regression

	Bias & Variance
	Implications of Bias & Variance
	Feature Selection

	Receiver Operating Characteristics
	Outcomes of Binary Classifier
	ROC Curve

	Linear Classifiers
	Decision Boundaries
	General Decision Boundaries
	Linear Decision Boundaries
	Linearly Separable

	Centroid Method
	Perceptron Algorithm
	Perceptron Algorithm Without Bias
	Perceptron Algorithm With Bias
	Convergence of Perceptron Algorithm

	Support Vector Machines (SVMs)
	Hard-Margin SVM
	Maximum Margin Classifier
	Hard-Margin SVM Problem
	Support Vectors

	Soft-Margin SVM
	Adding Features
	Parabolic Lifting Map
	Ellipsoid & Hyperboloid Decision Boundaries
	Polynomial Decision Boundaries

	Bayes Decision Rule
	Two Classes
	Bayes Decision Rule: Asymmetric Loss
	Bayes Decision Rule: Symmetric Loss
	Bayes Risk

	Multiple Classes
	Bayes Decision Rule: Asymmetric Loss
	Bayes Decision Rule: Symmetric Loss
	Bayes Risk

	Generative & Discriminative Models

	Multivariate Gaussians
	Overview of Multivariate Gaussians
	Quadratic Forms
	Anisotropic Gaussians
	Quadratic Form & Isosurfaces

	Isotropic Gaussians
	Quadratic Form & Isosurfaces

	Maximum Likelihood Estimation (MLE)
	Overview of Maximum Likelihood Estimation
	Likelihood Estimators
	Bias of Estimators

	Isotropic Multivariate Gaussians
	Sample Mean
	Sample Variance
	Bias of Estimators

	Anisotropic Multivariate Gaussians
	Sample Mean
	Sample Covariance Matrix
	Bias of Estimators
	Invertibility of Sample Covariance

	Discrete Random Variables

	Gaussian Discriminant Analysis (GDA)
	Overview of Gaussian Discriminant Analysis
	Quadratic Discriminant Analysis (QDA)
	Isotropic Multivariate Gaussians
	Anisotropic Multivariate Gaussians

	Linear Discriminant Analysis
	Isotropic Multivariate Gaussians
	Anisotropic Multivariate Gaussians

	Comparison of LDA & QDA

	Regression
	Overview of Regression
	Linear Least Squares Regression
	Optimal Solution
	Advantages & Disadvantages
	Bias-Variance Decomposition

	Polynomial Least Squares Regression
	Weighted Least Squares Regression
	Optimal Solution
	Advantages & Disadvantages

	Logistic Regression
	Optimal Solution
	Advantages & Disadvantages

	Regularization
	Overview of Regularization
	Ridge Regression (Tikohonov Regularization)
	Optimal Solution
	Variation of Ridge Regression

	LASSO
	Bias-Variance Trade-Off
	Comparison of Regularization Methods
	Statistical Justification
	Feature Selection

	Decision Trees
	Overview of Decision Trees
	Advantages & Disadvantages

	Binary Decision Trees for Classification
	Decision Tree Nodes
	Decision Tree Training
	Choosing the Best Split
	Choosing the Stopping Criterion
	Decision Tree Classification
	Algorithms & Running Times

	Decision Tree Variations
	Regression
	Pruning
	Multivariate Splits

	Nearest Neighbors Classifier
	Overview of Nearest Neighbors
	Tuning the Hyperparamter
	Performance of Nearest Neighbors

	Nearest Neighbor Algorithms
	Exhaustive k-NN Algorithm
	Voronoi Diagrams
	k-d Trees

	Neural Networks
	Overview of Neural Networks
	Loss & Cost Functions
	Activation Functions
	Backpropagation

	Multilayer Perceptrons (MLPs)
	Fully-Connected Layer
	Forward Pass
	Backward Pass

	Convolutional Neural Networks (CNNs)
	Convolutional Layer
	Pooling Layer

	Neural Network Heuristics
	Sigmoid Unit Saturation
	Heuristics for Faster Training
	Heuristics for Avoiding Bad Local Minima
	Heuristics to Avoid Overfitting
	Heuristics to Avoid Underfitting
	Initializing Parameters

	III Unsupervised Learning Techniques
	Principal Component Analysis (PCA)
	Overview of PCA
	Purpose of PCA
	Orthogonal Projections

	PCA Interpretations
	Fitting a Gaussian
	Maximizing Variance
	Minimizing Projection Error

	More on PCA
	Choosing Size of k
	Singular Value Decomposition (SVD)
	PCA vs. LASSO

	Clustering
	Overview of Clustering
	k-Means Clustering
	k-Mean Heuristic
	Initializing the k-Means Algorithm
	k-Medoids Clustering

	Hierarchical Clustering
	Cluster Linkage
	Dendrogram

	Spectral Clustering
	Graph Theory
	Overview of Spectral Clustering
	Algebraic Problem
	Advantages of Spectral Clustering
	Variations of Spectral Clustering

	IV Improving Learning Techniques
	The Kernel Trick
	Kernels
	Polynomial Kernel
	Gaussian Kernel

	Kernelization
	Kernel Ridge Regression
	Dual Form of Ridge Regression
	Kernel Trick for Ridge Regression

	Kernel Perceptrons
	Dual Form of Perceptron
	Kernel Trick for Perceptrons

	Kernel Logisitic Regression
	Dual Form of Logistic Regression
	Kernel Trick for Logisitc Regression

	Kernel k-Means Clustering
	Dual Form of k-Means Clustering
	Kernel Trick for k-Means Clustering

	Ensembling & Adapative Boosting
	Ensemble Learning
	Bias & Variance with Ensembling

	Bagging
	Random Forests
	Feature Subset Selection
	Number of Decision Trees
	Algorithms & Running Times

	AdaBoost
	Metalearner
	AdaBoost Optimization Problem
	Optimal Classifier Prediction
	Optimal Classifier Weight
	Adaboost Algorithm
	Important Notes
	Short Decision Trees

